scholarly journals A Selective Tether Recruits Activated Response Regulator CheB to Its Chemoreceptor Substrate

mBio ◽  
2021 ◽  
Author(s):  
Mingshan Li ◽  
Xianjin Xu ◽  
Xiaoqin Zou ◽  
Gerald L. Hazelbauer

Two-component signal transduction systems are a primary means by which bacteria sense and respond to their environment. Response regulators are key components of these systems.

1997 ◽  
Vol 110 (10) ◽  
pp. 1141-1145 ◽  
Author(s):  
W.F. Loomis ◽  
G. Shaulsky ◽  
N. Wang

Autophosphorylating histidine kinases are an ancient conserved family of enzymes that are found in eubacteria, archaebacteria and eukaryotes. They are activated by a wide range of extracellular signals and transfer phosphate moieties to aspartates found in response regulators. Recent studies have shown that such two-component signal transduction pathways mediate osmoregulation in Saccharomyces cerevisiae, Dictyostelium discoideum and Neurospora crassa. Moreover, they play pivotal roles in responses of Arabidopsis thaliana to ethylene and cytokinin. A transmembrane histidine kinase encoded by dhkA accumulates when Dictyostelium cells aggregate during development. Activation of DhkA results in the inhibition of its response regulator, RegA, which is a cAMP phosphodiesterase that regulates the cAMP dependent protein kinase PKA. When PKA is activated late in the differentiation of prespore cells, they encapsulate into spores. There is evidence that this two-component system participates in a feedback loop linked to PKA in prestalk cells such that the signal to initiate encapsulation is rapidly amplified. Such signal transduction pathways can be expected to be found in a variety of eukaryotic differentiations since they are rapidly reversible and can integrate disparate signals.


2004 ◽  
Vol 186 (23) ◽  
pp. 7951-7958 ◽  
Author(s):  
Lynn E. Hancock ◽  
Marta Perego

ABSTRACT The ability of enterococci to adapt and respond to different environmental stimuli, including the host environment, led us to investigate the role of two-component signal transduction in the regulation of Enterococcus faecalis physiology. Using a bioinformatic approach, we previously identified 17 two-component systems (TCS), consisting of a sensory histidine kinase and the cognate response regulator, as well as an additional orphan response regulator (L. E. Hancock and M. Perego, J. Bacteriol. 184:5819-5825, 2002). In an effort to identify the potential function of each TCS in the biology of E. faecalis clinical isolate strain V583, we constructed insertion mutations in each of the response regulators. We were able to inactivate 17 of 18 response regulators, the exception being an ortholog of YycF, previously shown to be essential for viability in a variety of gram-positive microorganisms. The biological effects of the remaining mutations were assessed by using a number of assays, including antibiotic resistance, biofilm formation, and environmental stress. We identified TCS related to antibiotic resistance and environmental stress and found one system which controls the initiation of biofilm development by E. faecalis.


2000 ◽  
Vol 182 (5) ◽  
pp. 1423-1426 ◽  
Author(s):  
Peter De Wulf ◽  
E. C. C. Lin

ABSTRACT In Escherichia coli, the CpxA-CpxR two-component signal transduction system and the ςE and ς32response pathways jointly regulate gene expression in adaptation to adverse conditions. These include envelope protein distress, heat shock, oxidative stress, high pH, and entry into stationary phase. Certain mutant versions of the CpxA sensor protein (CpxA* proteins) exhibit an elevated ratio of kinase to phosphatase activity on CpxR, the cognate response regulator. As a result, CpxA* strains display numerous phenotypes, many of which cannot be easily related to currently known functions of the CpxA-CpxR pathway. It is unclear whether CpxA* phenotypes are caused solely by hyperphosphorylation of CpxR. We here report that all of the tested CpxA* phenotypes depend on elevated levels of CpxR-P and not on cross-signalling of CpxA* to noncognate response regulators.


2007 ◽  
Vol 189 (16) ◽  
pp. 5825-5838 ◽  
Author(s):  
Elizabeth A. Hussa ◽  
Therese M. O'Shea ◽  
Cynthia L. Darnell ◽  
Edward G. Ruby ◽  
Karen L. Visick

ABSTRACT Two-component signal transduction systems are utilized by prokaryotic and eukaryotic cells to sense and respond to environmental stimuli, both to maintain homeostasis and to rapidly adapt to changing conditions. Studies have begun to emerge that utilize a large-scale mutagenesis approach to analyzing these systems in prokaryotic organisms. Due to the recent availability of its genome sequence, such a global approach is now possible for the marine bioluminescent bacterium Vibrio fischeri, which exists either in a free-living state or as a mutualistic symbiont within a host organism such as the Hawaiian squid species Euprymna scolopes. In this work, we identified 40 putative two-component response regulators encoded within the V. fischeri genome. Based on the type of effector domain present, we classified six as NarL type, 13 as OmpR type, and six as NtrC type; the remaining 15 lacked a predicted DNA-binding domain. We subsequently mutated 35 of these genes via a vector integration approach and analyzed the resulting mutants for roles in bioluminescence, motility, and competitive colonization of squid. Through these assays, we identified three novel regulators of V. fischeri luminescence and seven regulators that altered motility. Furthermore, we found 11 regulators with a previously undescribed effect on competitive colonization of the host squid. Interestingly, five of the newly characterized regulators each affected two or more of the phenotypes examined, strongly suggesting interconnectivity among systems. This work represents the first large-scale mutagenesis of a class of genes in V. fischeri using a genomic approach and emphasizes the importance of two-component signal transduction in bacterium-host interactions.


2010 ◽  
Vol 77 (4) ◽  
pp. 1516-1519 ◽  
Author(s):  
Cristina Alcántara ◽  
Ainhoa Revilla-Guarinos ◽  
Manuel Zúñiga

ABSTRACTLactobacillus caseiBL23 carries 17 two-component signal transduction systems. Insertional mutations were introduced into each gene encoding the cognate response regulators, and their effects on growth under different conditions were assayed. Inactivation of systems TC01, TC06, and TC12 (LCABL_02080-LCABL_02090, LCABL_12050-LCABL_12060, and LCABL_19600-LCABL_19610, respectively) led to major growth defects under the conditions assayed.


Microbiology ◽  
2006 ◽  
Vol 152 (10) ◽  
pp. 3035-3048 ◽  
Author(s):  
Mark de Been ◽  
Christof Francke ◽  
Roy Moezelaar ◽  
Tjakko Abee ◽  
Roland J. Siezen

Members of the Bacillus cereus group are ubiquitously present in the environment and can adapt to a wide range of environmental fluctuations. In bacteria, these adaptive responses are generally mediated by two-component signal transduction systems (TCSs), which consist of a histidine kinase (HK) and its cognate response regulator (RR). With the use of in silico techniques, a complete set of HKs and RRs was recovered from eight completely sequenced B. cereus group genomes. By applying a bidirectional best-hits method combined with gene neighbourhood analysis, a footprint of these proteins was made. Around 40 HK-RR gene pairs were detected in each member of the B. cereus group. In addition, each member contained many HK and RR genes not encoded in pairs (‘orphans’). Classification of HKs and RRs based on their enzymic domains together with the analysis of two neighbour-joining trees of these domains revealed putative interaction partners for most of the ‘orphans’. Putative biological functions, including involvement in virulence and host–microbe interactions, were predicted for the B. cereus group HKs and RRs by comparing them with those of B. subtilis and other micro-organisms. Remarkably, B. anthracis appeared to lack specific HKs and RRs and was found to contain many truncated, putatively non-functional, HK and RR genes. It is hypothesized that specialization of B. anthracis as a pathogen could have reduced the range of environmental stimuli to which it is exposed. This may have rendered some of its TCSs obsolete, ultimately resulting in the deletion of some HK and RR genes.


2003 ◽  
Vol 185 (6) ◽  
pp. 1851-1856 ◽  
Author(s):  
Hidetada Hirakawa ◽  
Kunihiko Nishino ◽  
Takahiro Hirata ◽  
Akihito Yamaguchi

ABSTRACT In Escherichia coli, there are 32 open reading frames (ORFs) that are assumed to be response regulator genes of two-component signal transduction systems on the basis of sequence similarities. We cloned all of these 32 ORFs into a multicopy expression vector and investigated whether or not they confer drug resistance via control of drug resistance determinants. Fifteen of these ORFs, i.e., baeR, citB, cpxR, evgA, fimZ, kdpE, narL, narP, ompR, rcsB, rstA, torR, yedW, yehT, and dcuR, conferred increased single- or multidrug resistance. Two-thirds of them conferred deoxycholate resistance. Five of them, i.e., evgA, baeR, ompR, cpxR, and rcsB, modulated the expression of several drug exporter genes. The drug resistance mediated by evgA, baeR, and cpxR could be assigned to drug exporters by using drug exporter gene knockout strains.


Sign in / Sign up

Export Citation Format

Share Document