scholarly journals Bar-Coded Pyrosequencing Reveals Shared Bacterial Community Properties along the Temperature Gradients of Two Alkaline Hot Springs in Yellowstone National Park

2009 ◽  
Vol 75 (13) ◽  
pp. 4565-4572 ◽  
Author(s):  
Scott R. Miller ◽  
Aaron L. Strong ◽  
Kenneth L. Jones ◽  
Mark C. Ungerer

ABSTRACT An understanding of how communities are organized is a fundamental goal of ecology but one which has historically been elusive for microbial systems. We used a bar-coded pyrosequencing approach targeting the V3 region of the bacterial small-subunit rRNA gene to address the factors that structure communities along the thermal gradients of two alkaline hot springs in the Lower Geyser Basin of Yellowstone National Park. The filtered data set included a total of nearly 34,000 sequences from 39 environmental samples. Each was assigned to one of 391 operational taxonomic units (OTUs) identified by their unique V3 sequence signatures. Although the two hot springs differed in their OTU compositions, community resemblance and diversity changed with strikingly similar dynamics along the two outflow channels. Two lines of evidence suggest that these community properties are controlled primarily by environmental temperature. First, community resemblance decayed exponentially with increasing differences in temperature between samples but was only weakly correlated with physical distance. Second, diversity decreased with increasing temperature at the same rate along both gradients but was uncorrelated with other measured environmental variables. This study also provides novel insights into the nature of the ecological interactions among important taxa in these communities. A strong negative association was observed between cyanobacteria and the Chloroflexi, which together accounted for ∼70% of the sequences sampled. This pattern contradicts the longstanding hypothesis that coadapted lineages of these bacteria maintain tightly cooccurring distributions along these gradients as a result of a producer-consumer relationship. We propose that they instead compete for some limiting resource(s).

2009 ◽  
Vol 76 (4) ◽  
pp. 1014-1020 ◽  
Author(s):  
Scott D. Hamilton-Brehm ◽  
Jennifer J. Mosher ◽  
Tatiana Vishnivetskaya ◽  
Mircea Podar ◽  
Sue Carroll ◽  
...  

ABSTRACT A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 μm long by 0.2 μm wide and grew at temperatures between 55 and 85°C, with the optimum at 78°C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h−1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).


2002 ◽  
Vol 68 (10) ◽  
pp. 5123-5135 ◽  
Author(s):  
Carrine E. Blank ◽  
Sherry L. Cady ◽  
Norman R. Pace

ABSTRACT The extent of hyperthermophilic microbial diversity associated with siliceous sinter (geyserite) was characterized in seven near-boiling silica-depositing springs throughout Yellowstone National Park using environmental PCR amplification of small-subunit rRNA genes (SSU rDNA), large-subunit rDNA, and the internal transcribed spacer (ITS). We found that Thermocrinis ruber, a member of the order Aquificales, is ubiquitous, an indication that primary production in these springs is driven by hydrogen oxidation. Several other lineages with no known close relatives were identified that branch among the hyperthermophilic bacteria. Although they all branch deep in the bacterial tree, the precise phylogenetic placement of many of these lineages is unresolved at this time. While some springs contained a fair amount of phylogenetic diversity, others did not. Within the same spring, communities in the subaqueous environment were not appreciably different than those in the splash zone at the edge of the pool, although a greater number of phylotypes was found along the pool's edge. Also, microbial community composition appeared to have little correlation with the type of sinter morphology. The number of cell morphotypes identified by fluorescence in situ hybridization and scanning electron microscopy was greater than the number of phylotypes in SSU clone libraries. Despite little variation in Thermocrinis ruber SSU sequences, abundant variation was found in the hypervariable ITS region. The distribution of ITS sequence types appeared to be correlated with distinct morphotypes of Thermocrinis ruber in different pools. Therefore, species- or subspecies-level divergences are present but not detectable in highly conserved SSU sequences.


2005 ◽  
Vol 55 (6) ◽  
pp. 2263-2268 ◽  
Author(s):  
S. Nakagawa ◽  
Z. Shtaih ◽  
A. Banta ◽  
T. J. Beveridge ◽  
Y. Sako ◽  
...  

A novel thermophilic, sulfur-oxidizing Gram-negative bacterium, designated strain SS-5T, was isolated from the Calcite Hot Springs in Yellowstone National Park, USA. The cells were motile rods (1·2–2·8 μm long and 0·6–0·8 μm wide). The new isolate was a facultative heterotroph capable of using elemental sulfur or thiosulfate as an electron donor and O2 (1–18 %; optimum 6 %, v/v) as an electron acceptor. Hydrogen did not support growth. The isolate grew autotrophically with CO2. In addition, strain SS-5T utilized various organic carbon sources such as yeast extract, tryptone, sugars, amino acids and organic acids. Growth was observed between 55 and 78 °C (optimum 70 °C; 3·5 h doubling time), pH 6·0 and 8·0 (optimum pH 7·5), and 0 and 0·6 % (w/v) NaCl (optimum 0 %). The G+C content of the genomic DNA was 32 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolate was a member of the genus Sulfurihydrogenibium. On the basis of the physiological and molecular characteristics of the new isolate, we propose the name Sulfurihydrogenibium yellowstonense sp. nov. with SS-5T (=JCM 12773T=OCM 840T) as the type strain. In addition, emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense are proposed.


2022 ◽  
Vol 10 (1) ◽  
pp. 142
Author(s):  
Hye Won Kim ◽  
Na Kyung Kim ◽  
Alex P. R. Phillips ◽  
David A. Parker ◽  
Ping Liu ◽  
...  

Verrucomicrobiotal methanotrophs are thermoacidophilic methane oxidizers that have been isolated from volcanic and geothermal regions of the world. We used a metagenomic approach that entailed obtaining the whole genome sequence of a verrucomicrobiotal methanotroph from a microbial consortium enriched from samples obtained from Nymph Lake (89.9 °C, pH 2.73) in Yellowstone National Park in the USA. To identify and reconstruct the verrucomicrobiotal genome from Illumina NovaSeq 6000 sequencing data, we constructed a bioinformatic pipeline with various combinations of de novo assembly, alignment, and binning algorithms. Based on the marker gene (pmoA), we identified and assembled the Candidatus Methylacidiphilum sp. YNP IV genome (2.47 Mbp, 2392 ORF, and 41.26% GC content). In a comparison of average nucleotide identity between Ca. Methylacidiphilum sp. YNP IV and Ca. Methylacidiphilum fumariolicum SolV, its closest 16S rRNA gene sequence relative, is lower than 95%, suggesting that Ca. Methylacidiphilum sp. YNP IV can be regarded as a different species. The Ca. Methylacidiphilum sp. YNP IV genome assembly showed most of the key genes for methane metabolism, the CBB pathway for CO2 fixation, nitrogen fixation and assimilation, hydrogenases, and rare earth elements transporter, as well as defense mechanisms. The assembly and reconstruction of a thermoacidophilic methanotroph belonging to the Verrucomicrobiota phylum from a geothermal environment adds further evidence and knowledge concerning the diversity of biological methane oxidation and on the adaptation of this geochemically relevant reaction in extreme environments.


2020 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Abdul Ghafar ◽  
Anson V. Koehler ◽  
Ross S. Hall ◽  
Charles G. Gauci ◽  
Robin B. Gasser ◽  
...  

Protists of the genera Babesia and Theileria (piroplasms) cause some of the most prevalent and debilitating diseases for bovines worldwide. In this study, we established and used a next-generation sequencing-informatic approach to explore the composition of Babesia and Theileria populations in cattle and water buffalo in a country (Pakistan) endemic for these pathogens. We collected individual blood samples from cattle (n = 212) and water buffalo (n = 154), extracted genomic DNAs, PCR-amplified the V4 hypervariable region of 18S small subunit rRNA gene from piroplasms, sequenced amplicons using Illumina technology, and then analysed data using bioinformatic platforms. The results revealed piroplasms in 68.9% (252/366) samples, with overall occurrence being markedly higher in cattle (85.8%) than in water buffaloes (45.5%). Babesia (B.) occultans and Theileria (T.) lestoquardi-like species were recorded for the first time in Pakistan, and, overall, T. annulata was most commonly detected (65.8%) followed by B. bovis (7.1%), B. bigemina (4.4%), and T. orientalis (0.5%), with the genetic variability within B. bovis being pronounced. The occurrence and composition of piroplasm species varied markedly across different agro-ecological zones. The high detection of T. annulata in asymptomatic animals suggested a relatively high level of endemic stability of tropical theileriosis in the bovine population.


2021 ◽  
Author(s):  
Eva De Boever ◽  
David Jaramillo‐Vogel ◽  
Anne‐Sophie Bouvier ◽  
Norbert Frank ◽  
Andrea Schröder‐Ritzrau ◽  
...  

2007 ◽  
Vol 73 (20) ◽  
pp. 6669-6677 ◽  
Author(s):  
Eric S. Boyd ◽  
Robert A. Jackson ◽  
Gem Encarnacion ◽  
James A. Zahn ◽  
Trevor Beard ◽  
...  

ABSTRACT Elemental sulfur (S0) is associated with many geochemically diverse hot springs, yet little is known about the phylogeny, physiology, and ecology of the organisms involved in its cycling. Here we report the isolation, characterization, and ecology of two novel, S0-reducing Crenarchaea from an acid geothermal spring referred to as Dragon Spring. Isolate 18U65 grows optimally at 70 to 72°C and at pH 2.5 to 3.0, while isolate 18D70 grows optimally at 81°C and pH 3.0. Both isolates are chemoorganotrophs, dependent on complex peptide-containing carbon sources, S0, and anaerobic conditions for respiration-dependent growth. Glycerol dialkyl glycerol tetraethers (GDGTs) containing four to six cyclopentyl rings were present in the lipid fraction of isolates 18U65 and 18D70. Physiological characterization suggests that the isolates are adapted to the physicochemical conditions of Dragon Spring and can utilize the natural organic matter in the spring as a carbon and energy source. Quantitative PCR analysis of 16S rRNA genes associated with the S0 flocs recovered from several acid geothermal springs using isolate-specific primers indicates that these two populations together represent 17 to 37% of the floc-associated DNA. The physiological characteristics of isolates 18U65 and 18D70 are consistent with their potential widespread distribution and putative role in the cycling of sulfur in acid geothermal springs throughout the Yellowstone National Park geothermal complex. Based on phenotypic and genetic characterization, the designations Caldisphaera draconis sp. nov. and Acidilobus sulfurireducens sp. nov. are proposed for isolates 18U65 and 18D70, respectively.


2003 ◽  
Vol 40 (11) ◽  
pp. 1611-1642 ◽  
Author(s):  
Donald R Lowe ◽  
Deena Braunstein

Slightly alkaline hot springs and geysers in Yellowstone National Park exhibit distinctive assemblages of high-temperature (>73 °C) siliceous sinter reflecting local hydrodynamic conditions. The main depositional zones include subaqueous pool and channel bottoms and intermittently wetted subaerial splash, surge, and overflow areas. Subaqueous deposits include particulate siliceous sediment and dendritic and microbial silica framework. Silica framework forms thin, porous, microbe-rich films coating subaqueous surfaces. Spicules with intervening narrow crevices dominate in splash zones. Surge and overflow deposits include pool and channel rims, columns, and knobs. In thin section, subaerial sinter is composed of (i) dark brown, nearly opaque laminated sinter deposited on surfaces that evaporate to dryness; (ii) clear translucent silica deposited subaqueously through precipitation driven by supersaturation; (iii) heterogeneous silica representing silica-encrusted microbial filaments and detritus; and (iv) sinter debris. Brownish laminations form the framework of most sinter deposited in surge and overflow zones. Pits and cavities are common architectural features of subaerial sinter and show concave-upward pseudo-cross-laminations and micro-unconformities developed through migration. Marked birefringence of silica deposited on surfaces that evaporate to dryness is probably a strain effect. Repeated wetting and evaporation, often to dryness, and capillary effects control the deposition, morphology, and microstructure of most high-temperature sinter outside of the fully subaqueous zone. Microbial filaments are abundant on and within high-temperature sinter but do not provide the main controls on morphology or structuring except in biofilms developed on subaqueous surfaces. Millimetre-scale lamination cyclicity in much high-temperature sinter represents annual layering and regular seasonal fluctuations in silica sedimentation.


2006 ◽  
Vol 72 (10) ◽  
pp. 6452-6460 ◽  
Author(s):  
Paul J. Hunter ◽  
Geoff M. Petch ◽  
Leo A. Calvo-Bado ◽  
Tim R. Pettitt ◽  
Nick R. Parsons ◽  
...  

ABSTRACT The microbiological characteristics associated with disease-suppressive peats are unclear. We used a bioassay for Pythium sylvaticum-induced damping-off of cress seedlings to identify conducive and suppressive peats. Microbial activity in unconditioned peats was negatively correlated with the counts of P. sylvaticum at the end of the bioassay. Denaturing gradient gel electrophoresis (DGGE) profiling and clone library analyses of small-subunit rRNA gene sequences from two suppressive and two conducive peats differed in the bacterial profiles generated and the diversity of sequence populations. There were also significant differences between bacterial sequence populations from suppressive and conducive peats. The frequencies of a number of microbial groups, including the Rhizobium-Agrobacterium group (specifically sequences similar to those for the genera Ochrobactrum and Zoogloea) and the Acidobacteria, increased specifically in the suppressive peats, although no single bacterial group was associated with disease suppression. Fungal DGGE profiles varied little over the course of the bioassay; however, two bands associated specifically with suppressive samples were detected. Sequences from these bands corresponded to Basidiomycete yeast genera. Although the DGGE profiles were similar, fungal sequence diversity also increased during the bioassay. Sequences highly similar to those of Cryptococcus increased in relative abundance during the bioassay, particularly in the suppressive samples. This study highlights the importance of using complementary approaches to molecular profiling of complex populations and provides the first report that basidiomycetous yeasts may be associated with the suppression of Pythium-induced diseases in peats.


Sign in / Sign up

Export Citation Format

Share Document