Engineering of Stable Recombinant Bacteria for Production of Chiral Medium-Chain-Length Poly-3-Hydroxyalkanoates

1999 ◽  
Vol 65 (8) ◽  
pp. 3265-3271 ◽  
Author(s):  
Maria A. Prieto ◽  
Michele B. Kellerhals ◽  
Gian B. Bozzato ◽  
Dragan Radnovic ◽  
Bernard Witholt ◽  
...  

ABSTRACT In order to scale up medium-chain-length polyhydroxyalkanoate (mcl-PHA) production in recombinant microorganisms, we generated and investigated different recombinant bacteria containing a stable regulated expression system for phaC1, which encodes one of the mcl-PHA polymerases of Pseudomonas oleovorans. We used the mini-Tn5 system as a tool to constructEscherichia coli 193MC1 and P. oleovoransPOMC1, which had stable antibiotic resistance and PHA production phenotypes when they were cultured in a bioreactor in the absence of antibiotic selection. The molecular weight and the polydispersity index of the polymer varied, depending on the inducer level. E. coli 193MC1 produced considerably shorter polyesters thanP. oleovorans produced; the weight average molecular weight ranged from 67,000 to 70,000, and the polydispersity index was 2.7. Lower amounts of inducer added to the media shifted the molecular weight to a higher value and resulted in a broader molecular mass distribution. In addition, we found that E. coli 193MC1 incorporated exclusively the R configuration of the 3-hydroxyoctanoate monomer into the polymer, which corroborated the enantioselectivity of the PhaC1 polymerase enzyme.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1398
Author(s):  
Tae-Rim Choi ◽  
Ye-Lim Park ◽  
Hun-Suk Song ◽  
Sun Mi Lee ◽  
Sol Lee Park ◽  
...  

Arctic bacteria employ various mechanisms to survive harsh conditions, one of which is to accumulate carbon and energy inside the cell in the form of polyhydroxyalkanoate (PHA). Whole-genome sequencing of a new Arctic soil bacterium Pseudomonas sp. B14-6 revealed two PHA-production-related gene clusters containing four PHA synthase genes (phaC). Pseudomonas sp. B14-6 produced poly(6% 3-hydroxybutyrate-co-94% 3-hydroxyalkanoate) from various carbon sources, containing short-chain-length PHA (scl-PHA) and medium-chain-length PHA (mcl-PHA) composed of various monomers analyzed by GC-MS, such as 3-hydroxybutyrate, 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, 3-hydroxydodecenoic acid, 3-hydroxydodecanoic acid, and 3-hydroxytetradecanoic acid. By optimizing the PHA production media, we achieved 34.6% PHA content using 5% fructose, and 23.7% PHA content using 5% fructose syrup. Differential scanning calorimetry of the scl-co-mcl PHA determined a glass transition temperature (Tg) of 15.3 °C, melting temperature of 112.8 °C, crystallization temperature of 86.8 °C, and 3.82% crystallinity. In addition, gel permeation chromatography revealed a number average molecular weight of 3.6 × 104, weight average molecular weight of 9.1 × 104, and polydispersity index value of 2.5. Overall, the novel Pseudomonas sp. B14-6 produced a polymer with high medium-chain-length content, low Tg, and low crystallinity, indicating its potential use in medical applications.


2012 ◽  
Vol 58 (8) ◽  
pp. 982-989 ◽  
Author(s):  
Parveen K. Sharma ◽  
Jilagamazhi Fu ◽  
Nazim Cicek ◽  
Richard Sparling ◽  
David B. Levin

Six bacteria that synthesize medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were isolated from sewage sludge and hog barn wash and identified as strains of Pseudomonas and Comamonas by 16S rDNA gene sequencing. One isolate, Pseudomonas putida LS46, showed good PHA production (22% of cell dry mass) in glucose medium, and it was selected for further studies. While it is closely related to other P. putida strains (F1, KT2440, BIRD-1, GB-1, S16, and W619), P. putida LS46 was genetically distinct from these other strains on the basis of nucleotide sequence analysis of the cpn60 gene hypervariable region. PHA production was detected as early as 12 h in both nitrogen-limited and nitrogen-excess conditions. The increase in PHA production after 48 h was higher in nitrogen-limited cultures than in nitrogen-excess cultures. Pseudomonas putida LS46 produced mcl-PHAs when cultured with glucose, glycerol, or C6–C14 saturated fatty acids as carbon sources, and mcl-PHAs accounted for 56% of the cell dry mass when cells were batch cultured in medium containing 20 mmol/L octanoate. Although 3-hydroxydecanoate was the major mcl-PHA monomer (58.1–68.8 mol%) in P. putida LS46 cultured in glucose medium, 3-hydroxyoctanoate was the major monomer produced in octanoate medium (88 mol%).


2003 ◽  
Vol 185 (18) ◽  
pp. 5391-5397 ◽  
Author(s):  
Si Jae Park ◽  
Sang Yup Lee

ABSTRACT The biosynthetic pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) from fatty acids has been established in fadB mutant Escherichia coli strain by expressing the MCL-PHA synthase gene. However, the enzymes that are responsible for the generation of (R)-3-hydroxyacyl coenzyme A (R3HA-CoAs), the substrates for PHA synthase, have not been thoroughly elucidated. Escherichia coli MaoC, which is homologous to Pseudomonas aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1), was identified and found to be important for PHA biosynthesis in a fadB mutant E. coli strain. When the MCL-PHA synthase gene was introduced, the fadB maoC double-mutant E. coli WB108, which is a derivative of E. coli W3110, accumulated 43% less amount of MCL-PHA from fatty acid compared with the fadB mutant E. coli WB101. The PHA biosynthetic capacity could be restored by plasmid-based expression of the maoCEc gene in E. coli WB108. Also, E. coli W3110 possessing fully functional β-oxidation pathway could produce MCL-PHA from fatty acid by the coexpression of the maoCEc gene and the MCL-PHA synthase gene. For the enzymatic analysis, MaoC fused with His6-Tag at its C-terminal was expressed in E. coli and purified. Enzymatic analysis of tagged MaoC showed that MaoC has enoyl-CoA hydratase activity toward crotonyl-CoA. These results suggest that MaoC is a new enoyl-CoA hydratase involved in supplying (R)-3-hydroxyacyl-CoA from the β-oxidation pathway to PHA biosynthetic pathway in the fadB mutant E. coli strain.


2012 ◽  
Vol 21 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Manoj Nerkar ◽  
Juliana A. Ramsay ◽  
Bruce A. Ramsay ◽  
Marianna Kontopoulou ◽  
Robin A. Hutchinson

2004 ◽  
Vol 70 (2) ◽  
pp. 999-1007 ◽  
Author(s):  
Christopher T. Nomura ◽  
Kazunori Taguchi ◽  
Seiichi Taguchi ◽  
Yoshiharu Doi

ABSTRACT Polyhydroxyalkanoates (PHAs) can be divided into three main types based on the sizes of the monomers incorporated into the polymer. Short-chain-length (SCL) PHAs consist of monomer units of C3 to C5, medium-chain-length (MCL) PHAs consist of monomer units of C6 to C14, and SCL-MCL PHAs consist of monomers ranging in size from C4 to C14. Although previous studies using recombinant Escherichia coli have shown that either SCL or MCL PHA polymers could be produced from glucose, this study presents the first evidence that an SCL-MCL PHA copolymer can be made from glucose in recombinant E. coli. The 3-ketoacyl-acyl carrier protein synthase III gene (fabH) from E. coli was modified by saturation point mutagenesis at the codon encoding amino acid 87 of the FabH protein sequence, and the resulting plasmids were cotransformed with either the pAPAC plasmid, which harbors the Aeromonas caviae PHA synthase gene (phaC), or the pPPAC plasmid, which harbors the Pseudomonas sp. strain 61-3 PHA synthase gene (phaC1), and the abilities of these strains to accumulate PHA from glucose were assessed. It was found that overexpression of several of the mutant fabH genes enabled recombinant E. coli to induce the production of monomers of C4 to C10 and subsequently to produce unusual PHA copolymers containing SCL and MCL units. The results indicate that the composition of PHA copolymers may be controlled by the monomer-supplying enzyme and further reinforce the idea that fatty acid biosynthesis may be used to supply monomers for PHA production.


2000 ◽  
Vol 182 (10) ◽  
pp. 2978-2981 ◽  
Author(s):  
Qun Ren ◽  
Nicolas Sierro ◽  
Bernard Witholt ◽  
Birgit Kessler

ABSTRACT Escherichia coli hosts expressing fabG ofPseudomonas aeruginosa showed 3-ketoacyl coenzyme A (CoA) reductase activity toward R-3-hydroxyoctanoyl-CoA. Furthermore, E. coli recombinants carrying the poly-3-hydroxyalkanoate (PHA) polymerase-encoding gene phaCin addition to fabG accumulated medium-chain-length PHAs (mcl-PHAs) from alkanoates. When E. coli fadB orfadA mutants, which are deficient in steps downstream or upstream of the 3-ketoacyl-CoA formation step during β-oxidation, respectively, were transformed with fabG, higher levels of PHA were synthesized in E. coli fadA, whereas similar levels of PHA were found in E. coli fadB, compared with those of the corresponding mutants carrying phaC alone. These results strongly suggest that FabG of P. aeruginosais able to reduce mcl-3-ketoacyl-CoAs generated by the β-oxidation to 3-hydroxyacyl-CoAs to provide precursors for the PHA polymerase.


2013 ◽  
Vol 98 (2) ◽  
pp. 611-620 ◽  
Author(s):  
Federico Cerrone ◽  
Santosh K. Choudhari ◽  
Reeta Davis ◽  
Denise Cysneiros ◽  
Vincent O’Flaherty ◽  
...  

1999 ◽  
Vol 65 (2) ◽  
pp. 540-548 ◽  
Author(s):  
Stefan Klinke ◽  
Qun Ren ◽  
Bernard Witholt ◽  
Birgit Kessler

ABSTRACT It was shown recently that recombinant Escherichia coli, defective in the β-oxidation cycle and harboring a medium-chain-length (MCL) poly(3-hydroxyalkanoate) (PHA) polymerase-encoding gene of Pseudomonas, is able to produce MCL PHA from fatty acids but not from sugars or gluconate (S. Langenbach, B. H. A. Rehm, and A. Steinbüchel, FEMS Microbiol. Lett. 150:303–309, 1997; Q. Ren, Ph.D. thesis, ETH Zürich, Zürich, Switzerland, 1997). In this study, we report the formation of MCL PHA from gluconate by recombinant E. coli. By introduction of genes coding for an MCL PHA polymerase and the cytosolic thioesterase I (′thioesterase I) into E. coli JMU193, we were able to engineer a pathway for the synthesis of MCL PHA from gluconate. We used two expression systems, i.e., thebad promoter and alk promoter, for the ′thioesterase I- and PHA polymerase-encoding genes, respectively, which enabled us to modulate their expression independently over a range of inducer concentrations, which resulted in a maximum MCL PHA accumulation of 2.3% of cell dry weight from gluconate. We found that the amount of PHA and the ′thioesterase I activity are directly correlated. Moreover, the polymer accumulated in the recombinantE. coli consisted mainly of 3-hydroxyoctanoate monomers. On the basis of our data, we propose an MCL PHA biosynthesis pathway scheme for recombinant E. coli JMU193, harboring PHA polymerase and ′thioesterase I, when grown on gluconate, which involves both de novo fatty acid synthesis and β-oxidation.


Sign in / Sign up

Export Citation Format

Share Document