scholarly journals Production of Medium-Chain-Length Poly(3-Hydroxyalkanoates) from Gluconate by Recombinant Escherichia coli

1999 ◽  
Vol 65 (2) ◽  
pp. 540-548 ◽  
Author(s):  
Stefan Klinke ◽  
Qun Ren ◽  
Bernard Witholt ◽  
Birgit Kessler

ABSTRACT It was shown recently that recombinant Escherichia coli, defective in the β-oxidation cycle and harboring a medium-chain-length (MCL) poly(3-hydroxyalkanoate) (PHA) polymerase-encoding gene of Pseudomonas, is able to produce MCL PHA from fatty acids but not from sugars or gluconate (S. Langenbach, B. H. A. Rehm, and A. Steinbüchel, FEMS Microbiol. Lett. 150:303–309, 1997; Q. Ren, Ph.D. thesis, ETH Zürich, Zürich, Switzerland, 1997). In this study, we report the formation of MCL PHA from gluconate by recombinant E. coli. By introduction of genes coding for an MCL PHA polymerase and the cytosolic thioesterase I (′thioesterase I) into E. coli JMU193, we were able to engineer a pathway for the synthesis of MCL PHA from gluconate. We used two expression systems, i.e., thebad promoter and alk promoter, for the ′thioesterase I- and PHA polymerase-encoding genes, respectively, which enabled us to modulate their expression independently over a range of inducer concentrations, which resulted in a maximum MCL PHA accumulation of 2.3% of cell dry weight from gluconate. We found that the amount of PHA and the ′thioesterase I activity are directly correlated. Moreover, the polymer accumulated in the recombinantE. coli consisted mainly of 3-hydroxyoctanoate monomers. On the basis of our data, we propose an MCL PHA biosynthesis pathway scheme for recombinant E. coli JMU193, harboring PHA polymerase and ′thioesterase I, when grown on gluconate, which involves both de novo fatty acid synthesis and β-oxidation.

2000 ◽  
Vol 182 (10) ◽  
pp. 2978-2981 ◽  
Author(s):  
Qun Ren ◽  
Nicolas Sierro ◽  
Bernard Witholt ◽  
Birgit Kessler

ABSTRACT Escherichia coli hosts expressing fabG ofPseudomonas aeruginosa showed 3-ketoacyl coenzyme A (CoA) reductase activity toward R-3-hydroxyoctanoyl-CoA. Furthermore, E. coli recombinants carrying the poly-3-hydroxyalkanoate (PHA) polymerase-encoding gene phaCin addition to fabG accumulated medium-chain-length PHAs (mcl-PHAs) from alkanoates. When E. coli fadB orfadA mutants, which are deficient in steps downstream or upstream of the 3-ketoacyl-CoA formation step during β-oxidation, respectively, were transformed with fabG, higher levels of PHA were synthesized in E. coli fadA, whereas similar levels of PHA were found in E. coli fadB, compared with those of the corresponding mutants carrying phaC alone. These results strongly suggest that FabG of P. aeruginosais able to reduce mcl-3-ketoacyl-CoAs generated by the β-oxidation to 3-hydroxyacyl-CoAs to provide precursors for the PHA polymerase.


2003 ◽  
Vol 185 (18) ◽  
pp. 5391-5397 ◽  
Author(s):  
Si Jae Park ◽  
Sang Yup Lee

ABSTRACT The biosynthetic pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) from fatty acids has been established in fadB mutant Escherichia coli strain by expressing the MCL-PHA synthase gene. However, the enzymes that are responsible for the generation of (R)-3-hydroxyacyl coenzyme A (R3HA-CoAs), the substrates for PHA synthase, have not been thoroughly elucidated. Escherichia coli MaoC, which is homologous to Pseudomonas aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1), was identified and found to be important for PHA biosynthesis in a fadB mutant E. coli strain. When the MCL-PHA synthase gene was introduced, the fadB maoC double-mutant E. coli WB108, which is a derivative of E. coli W3110, accumulated 43% less amount of MCL-PHA from fatty acid compared with the fadB mutant E. coli WB101. The PHA biosynthetic capacity could be restored by plasmid-based expression of the maoCEc gene in E. coli WB108. Also, E. coli W3110 possessing fully functional β-oxidation pathway could produce MCL-PHA from fatty acid by the coexpression of the maoCEc gene and the MCL-PHA synthase gene. For the enzymatic analysis, MaoC fused with His6-Tag at its C-terminal was expressed in E. coli and purified. Enzymatic analysis of tagged MaoC showed that MaoC has enoyl-CoA hydratase activity toward crotonyl-CoA. These results suggest that MaoC is a new enoyl-CoA hydratase involved in supplying (R)-3-hydroxyacyl-CoA from the β-oxidation pathway to PHA biosynthetic pathway in the fadB mutant E. coli strain.


2004 ◽  
Vol 70 (2) ◽  
pp. 999-1007 ◽  
Author(s):  
Christopher T. Nomura ◽  
Kazunori Taguchi ◽  
Seiichi Taguchi ◽  
Yoshiharu Doi

ABSTRACT Polyhydroxyalkanoates (PHAs) can be divided into three main types based on the sizes of the monomers incorporated into the polymer. Short-chain-length (SCL) PHAs consist of monomer units of C3 to C5, medium-chain-length (MCL) PHAs consist of monomer units of C6 to C14, and SCL-MCL PHAs consist of monomers ranging in size from C4 to C14. Although previous studies using recombinant Escherichia coli have shown that either SCL or MCL PHA polymers could be produced from glucose, this study presents the first evidence that an SCL-MCL PHA copolymer can be made from glucose in recombinant E. coli. The 3-ketoacyl-acyl carrier protein synthase III gene (fabH) from E. coli was modified by saturation point mutagenesis at the codon encoding amino acid 87 of the FabH protein sequence, and the resulting plasmids were cotransformed with either the pAPAC plasmid, which harbors the Aeromonas caviae PHA synthase gene (phaC), or the pPPAC plasmid, which harbors the Pseudomonas sp. strain 61-3 PHA synthase gene (phaC1), and the abilities of these strains to accumulate PHA from glucose were assessed. It was found that overexpression of several of the mutant fabH genes enabled recombinant E. coli to induce the production of monomers of C4 to C10 and subsequently to produce unusual PHA copolymers containing SCL and MCL units. The results indicate that the composition of PHA copolymers may be controlled by the monomer-supplying enzyme and further reinforce the idea that fatty acid biosynthesis may be used to supply monomers for PHA production.


2002 ◽  
Vol 184 (20) ◽  
pp. 5696-5705 ◽  
Author(s):  
Kristi D. Snell ◽  
Feng Feng ◽  
Luhua Zhong ◽  
David Martin ◽  
Lara L. Madison

ABSTRACT Expression of Escherichia coli open reading frame yfcX is shown to be required for medium-chain-length polyhydroxyalkanoate (PHAMCL) formation from fatty acids in an E. coli fadB mutant. The open reading frame encodes a protein, YfcX, with significant similarity to the large subunit of multifunctional β-oxidation enzymes. E. coli fadB strains modified to contain an inactivated copy of yfcX and to express a medium-chain-length synthase are unable to form PHAMCLs when grown in the presence of fatty acids. Plasmid-based expression of yfcX in the FadB− YfcX− PhaC+ strain restores polymer formation. YfcX is shown to be a multifunctional enzyme that minimally encodes hydratase and dehydrogenase activities. The gene encoding YfcX is located downstream from yfcY, a gene encoding thiolase activity. Results of insertional inactivation studies and enzyme activity analyses suggest a role for yfcX in PHA monomer unit formation in recombinant E. coli fadB mutant strains. Further studies are required to determine the natural role of YfcX in the metabolism of E. coli.


2017 ◽  
Vol 239 ◽  
pp. 542-545 ◽  
Author(s):  
Meng Wang ◽  
Kaili Nie ◽  
Hao Cao ◽  
Haijun Xu ◽  
Yunming Fang ◽  
...  

1999 ◽  
Vol 65 (8) ◽  
pp. 3265-3271 ◽  
Author(s):  
Maria A. Prieto ◽  
Michele B. Kellerhals ◽  
Gian B. Bozzato ◽  
Dragan Radnovic ◽  
Bernard Witholt ◽  
...  

ABSTRACT In order to scale up medium-chain-length polyhydroxyalkanoate (mcl-PHA) production in recombinant microorganisms, we generated and investigated different recombinant bacteria containing a stable regulated expression system for phaC1, which encodes one of the mcl-PHA polymerases of Pseudomonas oleovorans. We used the mini-Tn5 system as a tool to constructEscherichia coli 193MC1 and P. oleovoransPOMC1, which had stable antibiotic resistance and PHA production phenotypes when they were cultured in a bioreactor in the absence of antibiotic selection. The molecular weight and the polydispersity index of the polymer varied, depending on the inducer level. E. coli 193MC1 produced considerably shorter polyesters thanP. oleovorans produced; the weight average molecular weight ranged from 67,000 to 70,000, and the polydispersity index was 2.7. Lower amounts of inducer added to the media shifted the molecular weight to a higher value and resulted in a broader molecular mass distribution. In addition, we found that E. coli 193MC1 incorporated exclusively the R configuration of the 3-hydroxyoctanoate monomer into the polymer, which corroborated the enantioselectivity of the PhaC1 polymerase enzyme.


2012 ◽  
Vol 78 (20) ◽  
pp. 7229-7237 ◽  
Author(s):  
Joana Gangoiti ◽  
Marta Santos ◽  
María Auxiliadora Prieto ◽  
Isabel de la Mata ◽  
Juan L. Serra ◽  
...  

ABSTRACTNineteen medium-chain-length (mcl) poly(3-hydroxyalkanoate) (PHA)-degrading microorganisms were isolated from natural sources. From them, seven Gram-positive and three Gram-negative bacteria were identified. The ability of these microorganisms to hydrolyze other biodegradable plastics, such as short-chain-length (scl) PHA, poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), and poly(l-lactide) (PLA), has been studied. On the basis of the great ability to degrade different polyesters,Streptomyces roseolusSL3 was selected, and its extracellular depolymerase was biochemically characterized. The enzyme consisted of one polypeptide chain of 28 kDa with a pI value of 5.2. Its maximum activity was observed at pH 9.5 with chromogenic substrates. The purified enzyme hydrolyzed mcl PHA and PCL but not scl PHA, PES, and PLA. Moreover, the mcl PHA depolymerase can hydrolyze various substrates for esterases, such as tributyrin andp-nitrophenyl (pNP)-alkanoates, with its maximum activity being measured withpNP-octanoate. Interestingly, when poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate [11%]) was used as the substrate, the main hydrolysis product was the monomer (R)-3-hydroxyoctanoate. In addition, the genes of severalActinobacteriastrains, includingS. roseolusSL3, were identified on the basis of the peptidede novosequencing of theStreptomyces venezuelaeSO1 mcl PHA depolymerase by tandem mass spectrometry. These enzymes did not show significant similarity to mcl PHA depolymerases characterized previously. Our results suggest that these distinct enzymes might represent a new subgroup of mcl PHA depolymerases.


2011 ◽  
Vol 78 (2) ◽  
pp. 519-527 ◽  
Author(s):  
Qin Wang ◽  
Ryan C. Tappel ◽  
Chengjun Zhu ◽  
Christopher T. Nomura

ABSTRACTPseudomonas putidaKT2440 is capable of producing medium-chain-length polyhydroxyalkanoates (MCL-PHAs) when grown on unrelated carbon sources during nutrient limitation. Transcription levels of genes putatively involved in PHA biosynthesis were assessed by quantitative real-time PCR (qRT-PCR) inP. putidagrown on glycerol as a sole carbon source. The results showed that two genes,phaGand the PP0763 gene, were highly upregulated among genes potentially involved in the biosynthesis of MCL-PHAs from unrelated carbon sources. Previous studies have describedphaGas a 3-hydroxyacyl-acyl carrier protein (ACP)-coenzyme A (CoA) transferase, and based on homology, the PP0763 gene was predicted to encode a medium-chain-fatty-acid CoA ligase. High expression levels of these genes during PHA production inP. putidaled to the hypothesis that these two genes are involved in PHA biosynthesis from non-fatty acid carbon sources, such as glucose and glycerol. ThephaGppand PP0763 genes fromP. putidawere cloned and coexpressed with the engineeredPseudomonassp. 61-3 PHA synthase genephaCl(STQK)psin recombinantEscherichia coli. Up to 400 mg liter−1MCL-PHAs was successfully produced from glucose. This study has produced the largest amount of MCL-PHAs reported from non-fatty acid carbon sources in recombinantE. colito date and opens up the possibility of using inexpensive feedstocks to produce MCL-PHA polymers.


Sign in / Sign up

Export Citation Format

Share Document