scholarly journals Isolation and Expression in Escherichia coli ofcslA and cslB, Genes Coding for the Chondroitin Sulfate-Degrading Enzymes Chondroitinase AC and Chondroitinase B, Respectively, from Flavobacterium heparinum

2000 ◽  
Vol 66 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Ana Lydia Tkalec ◽  
Dominique Fink ◽  
Françoise Blain ◽  
Guiyi Zhang-Sun ◽  
Maryse Laliberte ◽  
...  

ABSTRACT In medium supplemented with chondroitin sulfate,Flavobacterium heparinum synthesizes and exports two chondroitinases, chondroitinase AC (chondroitin AC lyase; EC 4.2.2.5 ) and chondroitinase B (chondroitin B lyase; no EC number), into its periplasmic space. Chondroitinase AC preferentially depolymerizes chondroitin sulfates A and C, whereas chondroitinase B degrades only dermatan sulfate (chondroitin sulfate B). The genes coding for both enzymes were isolated from F. heparinum and designated cslA (chondroitinase AC) and cslB(chondroitinase B). They were found to be separated by 5.5 kb on the chromosome of F. heparinum, transcribed in the same orientation, but not linked to any of the heparinase genes. In addition, the synthesis of both enzymes appeared to be coregulated. The cslA and cslB DNA sequences revealed open reading frames of 2,103 and 1,521 bp coding for peptides of 700 and 506 amino acid residues, respectively. Chondroitinase AC has a signal sequence of 22 residues, while chondroitinase B is composed of 25 residues. The mature forms of chondroitinases AC and B are comprised of 678 and 481 amino acid residues and have calculated molecular masses of 77,169 and 53,563 Da, respectively. TruncatedcslA and cslB genes have been used to produce active, mature chondroitinases in the cytoplasm of Escherichia coli. Partially purified recombinant chondroitinases AC and B exhibit specific activities similar to those of chondroitinases AC and B from F. heparinum.

2000 ◽  
Vol 182 (14) ◽  
pp. 4101-4103 ◽  
Author(s):  
Takao Watanabe ◽  
Hisaaki Sato ◽  
Yu Hatakeyama ◽  
Takeshi Matsuzawa ◽  
Masanori Kawai ◽  
...  

ABSTRACT The Staphylococcus hyicus exfoliative toxin B (SHETB) gene was cloned into pUC118 and expressed in Escherichia coli. The nucleotide sequence of the SHETB gene consists of a coding region of 804 bp specifying a polypeptide of 268 amino acid residues, which included a putative 20-residue signal sequence.


1989 ◽  
Vol 3 (2) ◽  
pp. 105-112 ◽  
Author(s):  
T. S. Grewal ◽  
P. J. Lowry ◽  
D. Savva

ABSTRACT A large portion of the human pro-opiomelanocortin (POMC) peptide corresponding to amino acid residues 59–241 has been cloned and expressed in Escherichia coli. A 1·0 kb DNA fragment encoding this peptide was cloned into the expression vectors pUC8 and pUR291. Plasmid pJMBG51 (a pUC8 recombinant) was found to direct the expression of a 24 kDa peptide. The recombinant pUR291 (pJMBG52) was shown to produce a β-galactosidase fusion protein of 140 kDa. Western blot analysis showed that both the 24 kDa and 140 kDa peptides are recognized by antibodies raised against POMC-derived peptides. The β-galactosidase fusion protein has been partially purified from crude E. coli cell lysates using affinity chromatography on p-aminobenzyl-1-thio-β-d-galactopyranoside agarose.


2006 ◽  
Vol 34 (1) ◽  
pp. 118-121 ◽  
Author(s):  
E.J. Dridge ◽  
D.J. Richardson ◽  
R.J. Lewis ◽  
C.S. Butler

The AF0174–AF0176 gene cluster in Archaeoglobus fulgidus encodes a putative oxyanion reductase of the D-type (Type II) family of molybdo-enzymes. Sequence analysis reveals that the catalytic subunit AF0176 shares low identity (31–32%) and similarity (41–42%) to both NarG and SerA, the catalytic components of the respiratory nitrate and selenate reductases respectively. Consequently, predicting the oxyanion substrate selectivity of AF0176 has proved difficult based solely on sequence alignments. In the present study, we have modelled both AF0176 and SerA on the recently determined X-ray structure of the NAR (nitrate reductase) from Escherichia coli and have identified a number of key amino acid residues, conserved in all known NAR sequences, including AF0176, that we speculate may enhance selectivity towards trigonal planar (NO3−) rather than tetrahedral (SeO42− and ClO4−) substrates.


1971 ◽  
Vol 227 (1) ◽  
pp. 171-179 ◽  
Author(s):  
Yoshihisa Nishimura ◽  
Hiroshi Makino ◽  
Osamu Takenaka ◽  
Yuji Inada

1999 ◽  
Vol 181 (8) ◽  
pp. 2485-2491 ◽  
Author(s):  
B. H. A. Kremer ◽  
J. J. E. Bijlsma ◽  
J. G. Kusters ◽  
J. de Graaff ◽  
T. J. M. van Steenbergen

ABSTRACT Although we are currently unaware of its biological function, the fibril-like surface structure is a prominent characteristic of the rough (Rg) genotype of the gram-positive periodontal pathogenPeptostreptococcus micros. The smooth (Sm) type of this species as well as the smooth variant of the Rg type (RgSm) lack these structures on their surface. A fibril-specific serum, as determined by immunogold electron microscopy, was obtained through adsorption of a rabbit anti-Rg type serum with excess bacteria of the RgSm type. This serum recognized a 42-kDa protein, which was subjected to N-terminal sequencing. Both clones of a λTriplEx expression library that were selected by immunoscreening with the fibril-specific serum contained an open reading frame, designatedfibA, encoding a 393-amino-acid protein (FibA). The 15-residue N-terminal amino acid sequence of the 42-kDa antigen was present at positions 39 to 53 in FibA; from this we conclude that the mature FibA protein contains 355 amino acids, resulting in a predicted molecular mass of 41,368 Da. The putative 38-residue signal sequence of FibA strongly resembles other gram-positive secretion signal sequences. The C termini of FibA and two open reading frames directly upstream and downstream of fibA exhibited significant sequence homology to the C termini of a group of secreted and surface-located proteins of other gram-positive cocci that are all presumably involved in anchoring of the protein to carbohydrate structures. We conclude that FibA is a secreted and surface-located protein and as such is part of the fibril-like structures.


2002 ◽  
Vol 76 (11) ◽  
pp. 5829-5834 ◽  
Author(s):  
Yoshio Mori ◽  
Mohammed Ali Borgan ◽  
Naoto Ito ◽  
Makoto Sugiyama ◽  
Nobuyuki Minamoto

ABSTRACT Avian rotavirus NSP4 glycoproteins expressed in Escherichia coli acted as enterotoxins in suckling mice, as did mammalian rotavirus NSP4 glycoproteins, despite great differences in the amino acid sequences. The enterotoxin domain of PO-13 NSP4 exists in amino acid residues 109 to 135, a region similar to that reported in SA11 NSP4.


Sign in / Sign up

Export Citation Format

Share Document