scholarly journals Use of Green Fluorescent Protein To Tag Lactic Acid Bacterium Strains under Development as Live Vaccine Vectors

2000 ◽  
Vol 66 (1) ◽  
pp. 383-391 ◽  
Author(s):  
Marie-Claude Geoffroy ◽  
Cyril Guyard ◽  
Brigitte Quatannens ◽  
Sonia Pavan ◽  
Marc Lange ◽  
...  

ABSTRACT The lactic acid bacteria (LAB) are safe microorganisms which are mainly used for the preparation of fermented foods and for probiotic applications. The potential of LAB as live vehicles for the production and delivery of therapeutic molecules such as antigens is also being actively investigated today. However, very little is known about the fate of live LAB when administered in vivo and about the interaction of these microorganisms with the nasal or gastrointestinal ecosystem. For future applications, it is essential to be able to discriminate the biotherapeutic strain from the endogenous microflora and to unravel the mechanisms underlying the postulated health-beneficial effect. We therefore started to investigate both aspects in a mouse model with two LAB species presently under development as live vaccine vectors, i.e.,Lactococcus lactis and Lactobacillus plantarum. We have constructed different expression vectors carrying thegfp (green fluorescent protein [GFP]) gene from the jellyfish Aequoria victoria, and we found that this visible marker was best expressed when placed under the control of the inducible strong nisA promoter from L. lactis. Notably, a threshold amount of GFP was necessary to obtain a bright fluorescent phenotype. We further demonstrated that fluorescentL. plantarum NCIMB8826 can be enumerated and sorted by flow cytometry. Moreover, tagging of this strain with GFP allowed us to visualize its phagocytosis by macrophages in vitro and ex vivo and to trace it in the gastrointestinal tract of mice upon oral administration.

2003 ◽  
Vol 15 (4) ◽  
pp. 231 ◽  
Author(s):  
Hsi-Tien Wu ◽  
Chich-Sheng Lin ◽  
Mu-Chiou Huang

The 5′-regulative sequence and intron 1 of the goat β-casein gene from −4044 to +2123 bp was cloned and fused with the reporter gene of green fluorescent protein (GFP) to create a plasmid termed pGB562/GFP. To detect GFP expression, pGB562/GFP was transfected in vitro via liposomes into the mammary epithelial cell line NMuMG. Cells could not express GFP unless the transfected NMuMG cells lined up to create functional alveoli. These functional cells were cultured with lactogenic hormones, including insulin, dexamethasone and prolactin, and were grown on a layer of the extracellular matrix Matrigel. Green fluorescent protein expression levels in NMuMG cells were 25-, 55- and 42-fold those in the control group at 24, 48, and 72 h after pGB562/GFP transfection respectively. In addition, pGB562/GFP was transfected ex vivo by electroporation into mammary gland fragments and cells were then cultured in vitro with a supplement of lactogenic hormones. Strong GFP expression localized in fragments of the mammary gland was observed 24 h after gene transfer. The novel strategy of ex vivo gene transfer into mammary tissue using GFP as a reporter gene to detect the function of a tissue-specific promoter is efficient and convenient. The data obtained herein reveal that the 5′-regulative sequence and intron 1 of the 6.2 kb goat β-casein gene can enhance the efficiency of transgene expression. Thus, the GB562 sequence may act as a good promoter and effectively elevate the production of exogenous protein in mammary glands.


2007 ◽  
Vol 88 (4) ◽  
pp. 1196-1205 ◽  
Author(s):  
Erwin van den Born ◽  
Clara C. Posthuma ◽  
Kèvin Knoops ◽  
Eric J. Snijder

Thus far, systems developed for heterologous gene expression from the genomes of nidoviruses (arteriviruses and coronaviruses) have relied mainly on the translation of foreign genes from subgenomic mRNAs, whose synthesis is a key feature of the nidovirus life cycle. In general, such expression vectors often suffered from relatively low and unpredictable expression levels, as well as genome instability. In an attempt to circumvent these disadvantages, the possibility to express a foreign gene [encoding enhanced green fluorescent protein (eGFP)] from within the nidovirus replicase gene, which encodes two large polyproteins that are processed proteolytically into the non-structural proteins (nsps) required for viral RNA synthesis, has now been explored. A viable recombinant of the arterivirus Equine arteritis virus, EAV-GFP2, was obtained, which contained the eGFP insert at the site specifying the junction between the two most N-proximal replicase-cleavage products, nsp1 and nsp2. EAV-GFP2 replication could be launched by transfection of cells with either in vitro-generated RNA transcripts or a DNA launch plasmid. EAV-GFP2 displayed growth characteristics similar to those of the wild-type virus and was found to maintain the insert stably for at least eight passages. It is proposed that EAV-GFP2 has potential for arterivirus vector development and as a tool in inhibitor screening. It can also be used for fundamental studies into EAV replication, which was illustrated by the fact that the eGFP signal of EAV-GFP2, which largely originated from an eGFP–nsp2 fusion protein, could be used to monitor the formation of the membrane-bound EAV replication complex in real time.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Yingyun Cai ◽  
Shuiqing Yu ◽  
Ying Fang ◽  
Laura Bollinger ◽  
Yanhua Li ◽  
...  

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b’, is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


2021 ◽  
Vol 30 ◽  
pp. 096368972097821
Author(s):  
Andrea Tenorio-Mina ◽  
Daniel Cortés ◽  
Joel Esquivel-Estudillo ◽  
Adolfo López-Ornelas ◽  
Alejandro Cabrera-Wrooman ◽  
...  

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.


2001 ◽  
Vol 44 (S1) ◽  
pp. S339-S341
Author(s):  
K. E. Luker ◽  
G. D. Luker ◽  
C. M. Pica ◽  
J. L. Dahlheimer ◽  
T. J. Fahrner ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3304-3315 ◽  
Author(s):  
Marti F.A. Bierhuizen ◽  
Yvonne Westerman ◽  
Trudi P. Visser ◽  
Wati Dimjati ◽  
Albertus W. Wognum ◽  
...  

Abstract The further improvement of gene transfer into hematopoietic stem cells and their direct progeny will be greatly facilitated by markers that allow rapid detection and efficient selection of successfully transduced cells. For this purpose, a retroviral vector was designed and tested encoding a recombinant version of the Aequorea victoria green fluorescent protein that is enhanced for high-level expression in mammalian cells (EGFP). Murine cell lines (NIH 3T3, Rat2) and bone marrow cells transduced with this retroviral vector demonstrated a stable green fluorescence signal readily detectable by flow cytometry. Functional analysis of the retrovirally transduced bone marrow cells showed EGFP expression in in vitro clonogenic progenitors (GM-CFU), day 13 colony-forming unit-spleen (CFU-S), and in peripheral blood cells and marrow repopulating cells of transplanted mice. In conjunction with fluorescence-activated cell sorting (FACS) techniques EGFP expression could be used as a marker to select for greater than 95% pure populations of transduced cells and to phenotypically define the transduced cells using antibodies directed against specific cell-surface antigens. Detrimental effects of EGFP expression were not observed: fluorescence intensity appeared to be stable and hematopoietic cell growth was not impaired. The data show the feasibility of using EGFP as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in hematopoietic cells, to select for the genetically modified cells, and to track these cells and their progeny both in vitro and in vivo.


2000 ◽  
Vol 44 (6) ◽  
pp. 1588-1597 ◽  
Author(s):  
Manfred Marschall ◽  
Martina Freitag ◽  
Sigrid Weiler ◽  
Gabriele Sorg ◽  
Thomas Stamminger

ABSTRACT A recombinant human cytomegalovirus (AD169-GFP) expressing green fluorescent protein was generated by homologous recombination. Infection of human fibroblast cultures with AD169-GFP virus produced stable and readily detectable amounts of GFP signals which were quantitated by automated fluorometry. Hereby, high levels of sensitivity and reproducibility could be achieved, compared to those with the conventional plaque reduction assay. Antiviral activities were determined for four reference compounds as well as a set of putative novel cytomegalovirus inhibitors. The results obtained were exactly in line with the known characteristics of reference compounds and furthermore revealed distinct antiviral activities of novel in vitro inhibitors. The fluorometric data could be confirmed by GFP-based flow cytometry and fluorescence microscopy. In addition, laboratory virus variants derived from the recombinant AD169-GFP virus provided further possibilities for study of the characteristics of drug resistance. The GFP-based antiviral assay appeared to be very reliable for measuring virus-inhibitory effects in concentration- and time-dependent fashions and might also be adaptable for high-throughput screenings of cytomegalovirus-specific antiviral agents.


Sign in / Sign up

Export Citation Format

Share Document