scholarly journals Recombinant Green Fluorescent Protein-Expressing Human Cytomegalovirus as a Tool for Screening Antiviral Agents

2000 ◽  
Vol 44 (6) ◽  
pp. 1588-1597 ◽  
Author(s):  
Manfred Marschall ◽  
Martina Freitag ◽  
Sigrid Weiler ◽  
Gabriele Sorg ◽  
Thomas Stamminger

ABSTRACT A recombinant human cytomegalovirus (AD169-GFP) expressing green fluorescent protein was generated by homologous recombination. Infection of human fibroblast cultures with AD169-GFP virus produced stable and readily detectable amounts of GFP signals which were quantitated by automated fluorometry. Hereby, high levels of sensitivity and reproducibility could be achieved, compared to those with the conventional plaque reduction assay. Antiviral activities were determined for four reference compounds as well as a set of putative novel cytomegalovirus inhibitors. The results obtained were exactly in line with the known characteristics of reference compounds and furthermore revealed distinct antiviral activities of novel in vitro inhibitors. The fluorometric data could be confirmed by GFP-based flow cytometry and fluorescence microscopy. In addition, laboratory virus variants derived from the recombinant AD169-GFP virus provided further possibilities for study of the characteristics of drug resistance. The GFP-based antiviral assay appeared to be very reliable for measuring virus-inhibitory effects in concentration- and time-dependent fashions and might also be adaptable for high-throughput screenings of cytomegalovirus-specific antiviral agents.

2001 ◽  
Vol 45 (12) ◽  
pp. 3654-3656 ◽  
Author(s):  
Sarah W. Kamau ◽  
Felix Grimm ◽  
Adrian B. Hehl

ABSTRACT Transgenic Leishmania infantum promastigotes, which constitutively express green fluorescent protein (GFP) in their cytoplasm, were used to monitor the effects of antileishmanial compounds in real time. The GFP-based assay provided a reliable measure of drug-induced inhibitory effects on protein expression, resulting in a dynamic picture of the responses of leishmanial promastigotes to the compounds tested.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Peng-Fei Fu ◽  
Xuan Cheng ◽  
Bing-Qian Su ◽  
Li-Fang Duan ◽  
Cong-Rong Wang ◽  
...  

AbstractPseudorabies, caused by pseudorabies virus (PRV) variants, has broken out among commercial PRV vaccine-immunized swine herds and resulted in major economic losses to the pig industry in China since late 2011. However, the mechanism of virulence enhancement of variant PRV is currently unclear. Here, a recombinant PRV (rPRV HN1201-EGFP-Luc) with stable expression of enhanced green fluorescent protein (EGFP) and firefly luciferase as a double reporter virus was constructed on the basis of the PRV variant HN1201 through CRISPR/Cas9 gene-editing technology coupled with two sgRNAs. The biological characteristics of the recombinant virus and its lethality to mice were similar to those of the parental strain and displayed a stable viral titre and luciferase activity through 20 passages. Moreover, bioluminescence signals were detected in mice at 12 h after rPRV HN1201-EGFP-Luc infection. Using the double reporter PRV, we also found that 25-hydroxycholesterol had a significant inhibitory effect on PRV both in vivo and in vitro. These results suggested that the double reporter PRV based on PRV variant HN1201 should be an excellent tool for basic virology studies and evaluating antiviral agents.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Yingyun Cai ◽  
Shuiqing Yu ◽  
Ying Fang ◽  
Laura Bollinger ◽  
Yanhua Li ◽  
...  

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b’, is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


2021 ◽  
Vol 30 ◽  
pp. 096368972097821
Author(s):  
Andrea Tenorio-Mina ◽  
Daniel Cortés ◽  
Joel Esquivel-Estudillo ◽  
Adolfo López-Ornelas ◽  
Alejandro Cabrera-Wrooman ◽  
...  

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.


2001 ◽  
Vol 44 (S1) ◽  
pp. S339-S341
Author(s):  
K. E. Luker ◽  
G. D. Luker ◽  
C. M. Pica ◽  
J. L. Dahlheimer ◽  
T. J. Fahrner ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3304-3315 ◽  
Author(s):  
Marti F.A. Bierhuizen ◽  
Yvonne Westerman ◽  
Trudi P. Visser ◽  
Wati Dimjati ◽  
Albertus W. Wognum ◽  
...  

Abstract The further improvement of gene transfer into hematopoietic stem cells and their direct progeny will be greatly facilitated by markers that allow rapid detection and efficient selection of successfully transduced cells. For this purpose, a retroviral vector was designed and tested encoding a recombinant version of the Aequorea victoria green fluorescent protein that is enhanced for high-level expression in mammalian cells (EGFP). Murine cell lines (NIH 3T3, Rat2) and bone marrow cells transduced with this retroviral vector demonstrated a stable green fluorescence signal readily detectable by flow cytometry. Functional analysis of the retrovirally transduced bone marrow cells showed EGFP expression in in vitro clonogenic progenitors (GM-CFU), day 13 colony-forming unit-spleen (CFU-S), and in peripheral blood cells and marrow repopulating cells of transplanted mice. In conjunction with fluorescence-activated cell sorting (FACS) techniques EGFP expression could be used as a marker to select for greater than 95% pure populations of transduced cells and to phenotypically define the transduced cells using antibodies directed against specific cell-surface antigens. Detrimental effects of EGFP expression were not observed: fluorescence intensity appeared to be stable and hematopoietic cell growth was not impaired. The data show the feasibility of using EGFP as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in hematopoietic cells, to select for the genetically modified cells, and to track these cells and their progeny both in vitro and in vivo.


2006 ◽  
Vol 50 (8) ◽  
pp. 2806-2813 ◽  
Author(s):  
T. Ueno ◽  
Y. Eizuru ◽  
H. Katano ◽  
T. Kurata ◽  
T. Sata ◽  
...  

ABSTRACT Promyelocytic leukemia (PML) bodies are discrete nuclear foci that are intimately associated with many DNA viruses. In human cytomegalovirus (HCMV) infection, the IE1 (for “immediate-early 1”) protein has a marked effect on PML bodies via de-SUMOylation of PML protein. Here, we report a novel real-time monitoring system for HCMV-infected cells using a newly established cell line (SE/15) that stably expresses green fluorescent protein (GFP)-PML protein. In SE/15 cells, HCMV infection causes specific and efficient dispersion of GFP-PML bodies in an IE1-dependent manner, allowing the infected cells to be monitored by fluorescence microscopy without immunostaining. Since a specific change in the detergent solubility of GFP-PML occurs upon infection, the infected cells can be quantified by GFP fluorescence measurement after extraction. With this assay, the inhibitory effects of heparin and neutralizing antibodies were determined in small-scale cultures, indicating its usefulness for screening inhibitory reagents for laboratory virus strains. Furthermore, we established a sensitive imaging assay by counting the number of nuclei containing dispersed GFP-PML, which is applicable for titration of slow-growing clinical isolates. In all strains tested, the virus titers estimated by the GFP-PML imaging assay were well correlated with the plaque-forming cell numbers determined in human embryonic lung cells. Coculture of SE/15 cells and HCMV-infected fibroblasts permitted a rapid and reliable method for estimating the 50% inhibitory concentration values of drugs for clinical isolates in susceptibility testing. Taken together, these results demonstrate the development of a rapid, sensitive, quantitative, and specific detection system for HCMV-infected cells involving a simple procedure that can be used for titration of low-titer clinical isolates.


2010 ◽  
Vol 22 (1) ◽  
pp. 373
Author(s):  
M. Reichenbach ◽  
F. A. Habermann ◽  
H. D. Reichenbach ◽  
T. Guengoer ◽  
F. Weber ◽  
...  

An alternative approach to classic techniques for the generation of transgenic livestock is the use of viral vectors. Using lentiviral vectors (LV) we previously generated transgenic founder cattle with integrants carrying phosphoglycerate kinase (PGK) promoter-enhanced green fluorescent protein (eGFP) expression cassettes (Hofmann et al. 2004 Biol. Reprod. 71, 405-409). The aim of this work was to investigate the transmission of LV-PGK-eGFP integrants through the female and male germ line of transgenic founder cattle in resulting embryos, fetuses, and offspring. The female founder animal was superovulated and artificially inseminated with a nontransgenic bull. Six of the 16 embryos obtained were transferred to synchronized recipient heifers, resulting in 2 pregnancies and birth of 1 healthy male transgenic calf, expressing eGFP as detected by in vivo imaging and real-time PCR. Cryopreserved semen of the founder bull and matured COC of nontransgenic cows were used for in vitro embryo production as previously described by Hiendleder et al. (2004 Biol. Reprod. 71, 217-223). The rates of cleavage and development to blastocysts in vitro corresponded to 52.3 ± 3.8% and 23.5 ± 4.6%, respectively. In vivo expression of eGFP was observed at blastocyst stage (Day 7 after IVF) and was seen in 93.8% (198/211) of all blastocysts. Twenty-four eGFP-positive embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos flushed on Day 15, 2 fetuses recovered on Day 45, and a healthy male transgenic calf revealed consistent high-level expression of eGFP in all tissues investigated. These observations show for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. Although eGFP transgenic cattle have been produced before by nuclear transfer from transfected cells, lentiviral transgenesis has the advantage that only one copy of the provirus is integrated at a particular chromosomal integration site. High-fidelity expression of eGFP in embryos, fetuses, and offspring of founders provides an interesting tool for developmental studies in cattle, including interactions of gametes, embryos, and fetuses with their maternal environment.


1999 ◽  
Vol 67 (4) ◽  
pp. 1812-1820
Author(s):  
Maurizio del Poeta ◽  
Dena L. Toffaletti ◽  
Thomas H. Rude ◽  
Sara D. Sparks ◽  
Joseph Heitman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document