scholarly journals Comparison of Genotypes and Serotypes of Campylobacter jejuni Isolated from Danish Wild Mammals and Birds and from Broiler Flocks and Humans

2001 ◽  
Vol 67 (7) ◽  
pp. 3115-3121 ◽  
Author(s):  
L. Petersen ◽  
E. M. Nielsen ◽  
J. Engberg ◽  
S. L. W. On ◽  
H. H. Dietz

ABSTRACT The incidence of human infection with Campylobacter jejuni is increasing in most developed countries and the reason for this is largely unknown. Although poultry meat is considered to be a major source, it is evident that other reservoirs exist, possibly common to humans and poultry. Environmental sources are believed to be important reservoirs of Campylobacter infection in broiler chicken flocks. We investigated the potential importance of wildlife as a source of infection in commercial poultry flocks and in humans by comparing the serotype distributions, fla types, and macrorestriction profiles (MRPs) of C. jejuni isolates from different sources. The serotype distribution in wildlife was significantly different from the known distributions in broilers and humans. Considerable sero- and genotype diversity was found within the wildlife collection, although two major groups of isolates within serotype O:12 and the O:4 complex were found. Common clonal lines among wildlife, chicken, and/or human isolates were identified within serotype O:2 and the O:4 complex. However, MRPs of O:12 and O:38 strains isolated from wildlife and other sources indicated that some clonal lines propagated in a wide selection of animal species but were not detected in humans or broilers in this study. The applied typing methods successfully identified different clonal groups within a strain collection showing large genomic diversity. However, the relatively low number of wildlife strains with an inferred clonal relationship to human and chicken strains suggests that the importance of wildlife as a reservoir of infection is limited.

2020 ◽  
Vol 36 (2) ◽  
Author(s):  
Guilherme Paz Monteiro ◽  
Roberta Torres de Melo ◽  
Eliane Pereira Mendonça ◽  
Priscila Christen Nalevaiko ◽  
Mariela Moura Carreon ◽  
...  

Campylobacter spp. is an emerging pathogen that causes gastroenteritis in humans and the consumption of dairy food can characterize sources of infection. We aimed to verify the viability and a presence of transcripts associated with characteristics of virulence and adaptation of C. jejuni isolated from Minas Frescal cheeses, produced with contaminated milk and stored under refrigeration for up to ten days. The samples were analyzed for bioindicators, Campylobacter spp., pH, acidity, moisture and sodium chloride. Campylobacter spp. recovered were evaluated for the production of transcripts of: ciaB, dnaJ, p19 and sodB. The results were correlated with the viability of C. jejuni and changes in their transcriptome. Storage at low temperatures reduced C. jejuni from the first to the fourth day. The variations in humidity, pH and acidity influenced the decreasing of C. jejuni. There was a reduction in transcripts' production of the four genes, more pronounced on the fourth day, indicating the inability of the microorganism to perform its metabolic activities, due to the conditions of injury. Despite the presence of mechanisms of virulence and adaptation, C. jejuni could not remain viable four days after production. However, consumption of fresh cheese contaminated with Campylobacter jejuni can be a source of infection when consumed up to four days after production.


2007 ◽  
Vol 73 (24) ◽  
pp. 7959-7966 ◽  
Author(s):  
Christopher Pope ◽  
Janet Wilson ◽  
Eduardo N. Taboada ◽  
Joanne MacKinnon ◽  
Cristiano A. Felipe Alves ◽  
...  

ABSTRACT One hundred forty-one Campylobacter jejuni isolates from humans with diarrhea and 100 isolates from retailed poultry meat were differentiated by flaA typing. The bacteria were isolated in a specific geographical area (Dunedin) in New Zealand over a common time period. Twenty nine flaA types were detected, one of which (flaA restriction fragment length polymorphism type 15 [flaA-15]) predominated among isolates from humans (∼30% of isolates). This strain was of low prevalence (5% of isolates) among poultry isolates. flaA-15 strains were five to six times more invasive of HEp2 cells in an in vitro assay than a flaA type (flaA-3) that was commonly encountered on poultry meat (23% of isolates) but was seldom associated with human illness (5%). Competitive-exclusion experiments with chickens, utilizing real-time quantitative PCR to measure the population sizes of specific strains representing flaA-15 (T1016) and flaA-3 (Pstau) in digesta, were carried out. These experiments showed that T1016 always outcompeted Pstau in the chicken intestine. Genomic comparisons of T1016 and Pstau were made using DNA microarrays representing the genome of C. jejuni NCTC 11168. These comparisons revealed differences between the strains in the gene content of the Cj1417c-to-Cj1442c region of the genome, which is associated with the formation of capsular polysaccharide. The strains differed in Penner type (T1016, O42; Pstau, O53). It was concluded that poultry meat was at least one source of human infection with C. jejuni, that some Campylobacter strains detected in poultry meat are of higher virulence for humans than others, and that bacterial attributes affecting strain virulence and commensal colonization ability may be linked.


1982 ◽  
Vol 45 (7) ◽  
pp. 661-666 ◽  
Author(s):  
JOHN H. SILLIKER

Human salmonellosis continues to be an important public health problem. Consumer mishandling of poultry, meat and dairy products is the most frequent cause of outbreaks. Attempts to educate consumers in proper food handling practices have had disappointing results. Denmark has an intensive program directed towards students in the 7, 8, 9 and 10th grades. Canada is contemplating a similar program for students at the high school level. Similar efforts do not exist in the U.S. Contaminated animal feed continues to be an important source of infection to livestock. The recent rise in the importance of Salmonella agona and Salmonella hadar illustrates again the important chain leading from feed contamination to livestock infection to human infection. Scandinavian countries have intensive programs directed toward control of Salmonella in domestic meat animals. Indications are that this has decreased the incidence of Salmonella in livestock and that concurrently there has been a decreased incidence of human salmonellosis in these countries. The Nurmi concept, involving oral administration of the gastrointestinal flora of adult birds into newly hatched chicks and poults, shows promise as a practical and economical approach to reducing the incidence of salmonellae in poultry.


2010 ◽  
Vol 76 (7) ◽  
pp. 2145-2154 ◽  
Author(s):  
Petra M�llner ◽  
Julie M. Collins-Emerson ◽  
Anne C. Midwinter ◽  
Philip Carter ◽  
Simon E. F. Spencer ◽  
...  

ABSTRACT In New Zealand the number of campylobacteriosis notifications increased markedly between 2000 and 2007. Notably, this country's poultry supply is different than that of many developed countries as the fresh and frozen poultry available at retail are exclusively of domestic origin. To examine the possible link between human cases and poultry, a sentinel surveillance site was established to study the molecular epidemiology of Campylobacter jejuni over a 3-year period from 2005 to 2008 using multilocus sequence typing. Studies showed that 60.1 to 81.4% of retail poultry carcasses from the major suppliers were contaminated with C. jejuni. Differences were detected in the probability and level of contamination and the relative frequency of genotypes for individual poultry suppliers and humans. Some carcasses were contaminated with isolates belonging to more than one sequence type (ST), and there was evidence of both ubiquitous and supplier-associated strains, an epidemiological pattern not recognized yet in other countries. The common poultry STs were also common in human clinical cases, providing evidence that poultry is a major contributor to human infection. Both internationally rare genotypes, such as ST-3069 and ST-474, and common genotypes, such as ST-45 and ST-48, were identified in this study. The dominant human sequence type in New Zealand, ST-474, was found almost exclusively in isolates from one poultry supplier, which provided evidence that C. jejuni has a distinctive molecular epidemiology in this country. These results may be due in part to New Zealand's geographical isolation and its uniquely structured poultry industry.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kay M. Russell ◽  
Jacqueline Smith ◽  
Abi Bremner ◽  
Cosmin Chintoan-Uta ◽  
Lonneke Vervelde ◽  
...  

Abstract Background Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans and the handling or consumption of contaminated poultry meat is a key source of infection. Selective breeding of poultry that exhibit elevated resistance to Campylobacter is an attractive control strategy. Here we studied the global transcriptional response of inbred chicken lines that differ in resistance to C. jejuni colonisation at a key site of bacterial persistence. Results Three-week-old chickens of line 61 and N were inoculated orally with C. jejuni strain M1 and caecal contents and tonsils were sampled at 1 and 5 days post-infection. Caecal colonisation was significantly lower in line 61 compared to line N at 1 day post-infection, but not 5 days post-infection. RNA-Seq analysis of caecal tonsils of both lines revealed a limited response to C. jejuni infection compared to age-matched uninfected controls. In line N at days 1 and 5 post-infection, just 8 and 3 differentially expressed genes (DEGs) were detected (fold-change > 2 and false-discovery rate of < 0.05) relative to uninfected controls, respectively. In the relatively resistant line 61, a broader response to C. jejuni was observed, with 69 DEGs relating to immune regulation, cell signalling and metabolism at 1 day post-infection. However, by day 5 post-infection, no DEGs were detected. By far, the greatest number of DEGs were between uninfected birds of the two lines implying that differential resistance to C. jejuni is intrinsic. Of these genes, several Major Histocompatibility Complex class I-related genes (MHCIA1, MHCBL2 and MHCIY) and antimicrobial peptides (MUC2, AvBD10 and GZMA) were expressed to a greater extent in line N. Two genes within quantitative trait loci associated with C. jejuni colonisation were also more highly expressed in line N (ASIC4 and BZFP2). Quantitative reverse-transcriptase PCR analysis of a subset of transcripts confirmed the RNA-Seq results. Conclusions Our data indicate a limited transcriptional response in the caecal tonsils of inbred chickens to intestinal colonisation by Campylobacter but identify a large number of differentially transcribed genes between lines 61 and N that may underlie variation in heritable resistance to C. jejuni.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 520
Author(s):  
Prerna Vohra ◽  
Cosmin Chintoan-Uta ◽  
Vanessa S. Terra ◽  
Abi Bremner ◽  
Jon Cuccui ◽  
...  

Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide and the handling or consumption of contaminated poultry meat is the key source of infection. C. jejuni proteins FlpA and SodB and glycoconjugates containing the C. jejuni N-glycan have been separately reported to be partially protective vaccines in chickens. In this study, two novel glycoproteins generated by protein glycan coupling technology—G-FlpA and G-SodB (with two and three N-glycosylation sites, respectively)—were evaluated for efficacy against intestinal colonisation of chickens by C. jejuni strain M1 relative to their unglycosylated variants. Two independent trials of the same design were performed with either a high challenge dose of 107 colony-forming units (CFU) or a minimum challenge dose of 102 CFU of C. jejuni M1. While antigen-specific serum IgY was detected in both trials, no reduction in caecal colonisation by C. jejuni M1 was observed and glycosylation of vaccine antigens had no effect on the outcome. Our data highlight inconsistencies in the outcome of C. jejuni vaccination trials that may reflect antigen-, challenge strain-, vaccine administration-, adjuvant- and chicken line-specific differences from previously published studies. Refinement of glycoconjugate vaccines by increasing glycosylation levels or using highly immunogenic protein carriers could improve their efficacy.


2017 ◽  
Vol 80 (4) ◽  
pp. 604-608 ◽  
Author(s):  
Katrin Haas ◽  
Gudrun Overesch ◽  
Peter Kuhnert

ABSTRACT Human campylobacteriosis is a major public health concern in developed countries, with Campylobacter jejuni and Campylobacter coli from poultry recognized as the main source of human infection. Identification of Campylobacter-positive broiler herds before slaughter is essential for implementing measures to avoid carryover of pathogens via the slaughter process into the food chain. However, appropriate methods that have been validated for testing poultry flocks antemortem are lacking for Campylobacter. A quantitative real-time PCR (qPCR) that allows simultaneous detection and quantification of C. jejuni and C. coli was adapted and optimized to be applied on boot socks. The adjusted qPCR serves as an easy, sensitive, and quantitative method for Campylobacter detection in poultry flocks antemortem by analysis of boot socks. An adequate correlation was found between qPCR and culture, as well as between boot socks and cecal samples, which are regarded as the “gold standard.” Therefore, boot sock sampling followed by qPCR analysis provides a reliable and simple method for assessing Campylobacter load within a flock prior to slaughter. The approach allows categorization of broiler herds into negative, low, moderate, or high Campylobacter colonization. Based on the results of this new approach, risk assessment models, such as evaluating the possible effect of sorting flocks before slaughter, can be easily implemented. Similarly, targeted identification of highly colonized flocks for improvement of biosecurity measures at the farm level will become feasible, presenting an opportunity to increase food safety.


2021 ◽  
Author(s):  
Kay M. Russell ◽  
Jacqueline Smith ◽  
Abi Bremner ◽  
Cosmin Chintoan-Uta ◽  
Lonneke Vervelde ◽  
...  

Abstract Background Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans and the handling or consumption of contaminated poultry meat is a key source of infection. Selective breeding of poultry that exhibit elevated resistance to Campylobacter is an attractive control strategy. Here we studied the global transcriptional response of inbred chicken lines that differ in resistance to C. jejuni colonisation at a key site of bacterial persistence. Results Three-week-old chickens of line 61 and N were inoculated orally with C. jejuni strain M1 and caecal contents and tonsils were sampled at 1 and 5 days post-infection. Caecal colonisation was significantly lower in line 61 compared to line N at 1 day post-infection, but not 5 days post-infection. RNA-Seq analysis of caecal tonsils of both lines revealed a limited response to C. jejuni infection compared to age-matched uninfected controls. In line N at days 1 and 5 post-infection, just 8 and 3 differentially expressed genes (DEGs) were detected (fold-change > 2 and false-discovery rate of < 0.05) relative to uninfected controls, respectively. In the relatively resistant line 61, a broader response to C. jejuni was observed, with 69 DEGs relating to immune regulation, cell signalling and metabolism at 1 day post-infection. However, by day 5 post-infection, no DEGs were detected. By far, the greatest number of DEGs were between uninfected birds of the two lines implying that differential resistance to C. jejuni is intrinsic. Of these genes, several Major Histocompatibility Complex class I-related genes (MHCIA1, MHCBL2 and MHCIY) and antimicrobial peptides (MUC2, AvBD10 and GZMA) were expressed to a greater extent in line N. Two genes within quantitative trait loci associated with C. jejuni colonisation were also more highly expressed in line N (ASIC4 and BZFP2). Quantitative reverse-transcriptase PCR analysis of a subset of transcripts confirmed the RNA-Seq results. Conclusions Our data indicate a limited transcriptional response in the caecal tonsils of inbred chickens to intestinal colonisation by Campylobacter but identify a large number of differentially transcribed genes between lines 61 and N that may underlie variation in heritable resistance to C. jejuni.


2020 ◽  
Vol 40 (8) ◽  
pp. 598-603
Author(s):  
Thomas S. Dias ◽  
Leandro S. Machado ◽  
Julia A. Vignoli ◽  
Nathalie C. Cunha ◽  
Elmiro R. Nascimento ◽  
...  

ABSTRACT: Campylobacter spp. is a bacterial agent that causes gastroenteritis in humans and may trigger Guillain-Barré Syndrome (GBS) and is also considered one of the main foodborne diseases in developed countries. Poultry and pigs are considered reservoirs of these microorganisms, as well as raw or undercooked by-products are often incriminated as a source of human infection. Treatment in human cases is with macrolide, such erythromycin, that inhibits the protein synthesis of the microorganism. This study aimed to isolate Campylobacter jejuni and Campylobacter coli from intestinal content samples of broiler chickens (n=20) and swine (n=30) to characterize the erythromycin resistance profile of the strains and to detect molecular mechanisms involved in this resistance. The minimum inhibitory concentration was determined by agar dilution. The Mismatch Amplification Mutation Assay-Polymerase Chain Reaction (MAMA-PCR) was performed to detect mutations at positions 2074 and 2075 of 23S rRNA region, in addition to PCR test to detect the erm(B) gene. From the intestinal content of broiler chickens, 18 strains of C. jejuni and two strains of C. coli were isolated, whereas, from swine samples, no C. jejuni strain and 14 strains of C. coli were isolated. All C. coli strains were resistant, and three C. jejuni strains from broilers chickens were characterized with intermediate resistance to erythromycin. The MIC of the strains ranged from ≤0.5mg/μL to ≥128mg/μL. All resistant strains had the A2075G mutation, and one strain with intermediate resistance had the A2075G mutation. However, the A2074C mutation and the erm(B) gene were not detected. High resistance levels were detected in C. coli strains isolated from swine. The MAMA-PCR is a practical tool for detecting the erythromycin resistance in Campylobacter strains.


Author(s):  
Morgane Nennig ◽  
Ann-Katrin Llarena ◽  
Malte Herold ◽  
Joël Mossong ◽  
Christian Penny ◽  
...  

Campylobacter jejuni is the leading cause of bacterial gastroenteritis, which has motivated the monitoring of genetic profiles circulating in Luxembourg since 13 years. From our integrated surveillance using a genotyping strategy based on an extended MLST scheme including gyrA and porA markers, an unexpected endemic pattern was discovered in the temporal distribution of genotypes. We aimed to test the hypothesis of stable lineages occurrence by implementing whole genome sequencing (WGS) associated with comprehensive and internationally validated schemes. This pilot study assessed four WGS-based typing schemes to classify a panel of 108 strains previously identified as recurrent or sporadic profiles using this in-house typing system. The strain collection included four common lineages in human infection (N = 67) initially identified from recurrent combination of ST-gyrA-porA alleles also detected in non-human samples: veterinary (N = 19), food (N = 20), and environmental (N = 2) sources. An additional set of 19 strains belonging to sporadic profiles completed the tested panel. All the strains were processed by WGS by using Illumina technologies and by applying stringent criteria for filtering sequencing data; we ensure robustness in our genomic comparison. Four typing schemes were applied to classify the strains: (i) the cgMLST SeqSphere+ scheme of 637 loci, (ii) the cgMLST Oxford scheme of 1,343 loci, (iii) the cgMLST INNUENDO scheme of 678 loci, and (iv) the wgMLST INNUENDO scheme of 2,795 loci. A high concordance between the typing schemes was determined by comparing the calculated adjusted Wallace coefficients. After quality control and analyses with these four typing schemes, 60 strains were confirmed as members of the four recurrent lineages regardless of the method used (N = 32, 12, 7, and 9, respectively). Our results indicate that, regardless of the typing scheme used, epidemic or endemic signals were detected as reflected by lineage B (ST2254-gyrA9-porA1) in 2014 or lineage A (ST19-gyrA8-porA7), respectively. These findings support the clonal expansion of stable genomes in Campylobacter population exhibiting a multi-host profile and accounting for the majority of clinical strains isolated over a decade. Such recurring genotypes suggest persistence in reservoirs, sources or environment, emphasizing the need to investigate their survival strategy in greater depth.


Sign in / Sign up

Export Citation Format

Share Document