scholarly journals Impaired Cutinase Secretion in Saccharomyces cerevisiae Induces Irregular Endoplasmic Reticulum (ER) Membrane Proliferation, Oxidative Stress, and ER-Associated Degradation

2002 ◽  
Vol 68 (5) ◽  
pp. 2155-2160 ◽  
Author(s):  
C. M. J. Sagt ◽  
W. H. Müller ◽  
L. van der Heide ◽  
J. Boonstra ◽  
A. J. Verkleij ◽  
...  

ABSTRACT Impaired secretion of the hydrophobic CY028 cutinase invokes an unfolded protein response (UPR) in Saccharomyces cerevisiae cells. Here we show that the UPR in CY028-expressing S. cerevisiae cells is manifested as an aberrant morphology of the endoplasmic reticulum (ER) and as extensive membrane proliferation compared to the ER morphology and membrane proliferation of wild-type CY000-producing S. cerevisiae cells. In addition, we observed oxidative stress, which resulted in a 21-fold increase in carbonylated proteins in the CY028-producing S. cerevisiae cells. Moreover, CY028-producing S. cerevisiae cells use proteasomal degradation to reduce the amount of accumulated CY028 cutinase, thereby attenuating the stress invoked by CY028 cutinase expression. This proteasomal degradation occurs within minutes and is characteristic of ER-associated degradation (ERAD). Our results clearly show that impaired secretion of the heterologous, hydrophobic CY028 cutinase in S. cerevisiae cells leads to protein aggregation in the ER, aberrant ER morphology and proliferation, and oxidative stress, as well as a UPR and ERAD.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Giuseppina Amodio ◽  
Ornella Moltedo ◽  
Raffaella Faraonio ◽  
Paolo Remondelli

In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein misfolding within the endoplasmic reticulum. Although the first outcome of the UPR pathways is the promotion of an adaptive response, the persistent activation of UPR leads to increased oxidative stress and cell death. This molecular switch has been correlated to the onset or to the exacerbation of the endothelial dysfunction in cardiovascular diseases. In this review, we highlight the multiple chances of the UPR to induce or ameliorate oxidative disturbances and propose the UPR pathways as a new therapeutic target for the clinical management of endothelial dysfunction.


2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Mohammed N. A. Siddiquey ◽  
Hongbo Zhang ◽  
Christopher C. Nguyen ◽  
Anthony J. Domma ◽  
Jeremy P. Kamil

ABSTRACTEukaryotic cells are equipped with three sensors that respond to the accumulation of misfolded proteins within the lumen of the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR), which functions to resolve proteotoxic stresses involving the secretory pathway. Here, we identify UL148, a viral ER-resident glycoprotein from human cytomegalovirus (HCMV), as an inducer of the UPR. Metabolic labeling results indicate that global mRNA translation is decreased when UL148 expression is induced in uninfected cells. Further, we find that ectopic expression of UL148 is sufficient to activate at least two UPR sensors: the inositol-requiring enzyme-1 (IRE1), as indicated by splicing ofXbp-1mRNA, and the protein kinase R (PKR)-like ER kinase (PERK), as indicated by phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) and accumulation of activating transcription factor 4 (ATF4). During wild-type HCMV infection, increases inXbp-1splicing, eIF2α phosphorylation, and accumulation of ATF4 accompany UL148 expression.UL148-null infections, however, show reduced levels of these UPR indicators and decreases in XBP1s abundance and in phosphorylation of PERK and IRE1. Small interfering RNA (siRNA) depletion of PERK dampened the extent of eIF2α phosphorylation and ATF4 induction observed during wild-type infection, implicating PERK as opposed to other eIF2α kinases. A virus withUL148disrupted showed significant 2- to 4-fold decreases during infection in the levels of transcripts canonically regulated by PERK/ATF4 and by the ATF6 pathway. Taken together, our results argue that UL148 is sufficient to activate the UPR when expressed ectopically and that UL148 is an important cause of UPR activation in the context of the HCMV-infected cell.IMPORTANCEThe unfolded protein response (UPR) is an ancient cellular response to ER stress that is of broad importance to viruses. Certain consequences of the UPR, including mRNA degradation and translational shutoff, would presumably be disadvantageous to viruses, while other attributes of the UPR, such as ER expansion and upregulation of protein folding chaperones, might enhance viral replication. Although HCMV is estimated to express well over 150 different viral proteins, we show that the HCMV ER-resident glycoprotein UL148 contributes substantially to the UPR during infection and, moreover, is sufficient to activate the UPR in noninfected cells. Experimental activation of the UPR in mammalian cells is difficult to achieve without the use of toxins. Therefore, UL148 may provide a new tool to investigate fundamental aspects of the UPR. Furthermore, our findings may have implications for understanding the mechanisms underlying the effects of UL148 on HCMV cell tropism and evasion of cell-mediated immunity.


2020 ◽  
Vol 133 (21) ◽  
pp. jcs248526 ◽  
Author(s):  
Wei Sheng Yap ◽  
Peter Shyu ◽  
Maria Laura Gaspar ◽  
Stephen A. Jesch ◽  
Charlie Marvalim ◽  
...  

ABSTRACTLipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage-inducing transmembrane (FIT; also known as FITM) family induces LD formation. Here, we establish a model system to study the role of the Saccharomyces cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in the proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1. Owing to not having a functional UPR, cells with mutated SCS3 exhibited an accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting that there is a UPR-dependent compensatory mechanism that acts to mitigate lack of SCS3. Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitylation and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.This article has an associated First Person interview with the first author of the paper.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4332-4332 ◽  
Author(s):  
Simona Salati ◽  
Elena Genovese ◽  
Zelia Prudente ◽  
Chiara Carretta ◽  
Niccolò Bartalucci ◽  
...  

Abstract Somatic mutations of calreticulin (CALR) have been described in approximately 30-40% of JAK2 and MPL unmutated Essential Thrombocythemia and Primary Myelofibrosis patients. CALR is an endoplasmic reticulum (ER) chaperone responsible for proper protein folding and calcium retention. Recent data demonstrated that the TPO receptor (MPL) is essential for the development of CALR mutant-driven Myeloproliferative Neoplasms (MPNs). However, the precise mechanism of action of CALR mutants haven't been fully unraveled. In order to assess whether and how CALR mutations could affect the physiological CALR protein functions in the ER and thus contributing through other mechanisms to the development of MPNs, we decided to study the role of mutated CALR in K562 cells, devoid of MPL expression. To this end, K562 cells stably expressing either wt CALR or the two most common CALR mutated variants CALRdel52 and CALRins5 were generated via retroviral mediated gene transfer. To identify common signalling pathways modulated by CALR mutants, GEP analysis was performed. Ingenuity Pathway analysis performed on Differentially Expressed Gene (DEGs) revealed that the categories "Unfolded protein response", "Endoplasmic Reticulum Stress Pathway", and "NRF2-mediated Oxidative Stress Response" were significantly represented in the list of decreased genes in the comparison mutated vs wt K562. Based on these findings, the ability to respond to ER and oxidative stresses were assessed in K562 carrying either wt or mutated CALR. Our data demonstrated that CALR mutants negatively impact on the Unfolded Protein Response (UPR): in particular, CALR mutations appear to reduce the activation of the pro-apoptotic pathway downstream the UPR, therefore allowing the accumulation of misfolded proteins in the ER and conferring resistance to ER stress-induced apoptosis. Moreover, our results showed that CALR mutations also affect the capability to respond to oxidative stress: K562 cells carrying CALR mutants showed decreased SOD activity coupled to increased ROS intracellular levels, suggesting that CALR mutants impair cell ability to counteract ROS accumulation. Furthermore, cells carrying CALR mutants showed increased levels of DNA damage upon oxidative stress exposure and decreased ability to repair the oxidative DNA damage. We also demonstrated that the downmodulation of OXR1 in CALR-mutated cells could be one of the molecular mechanisms responsible for the increased sensitivity to oxidative stress mediated by mutant CALR. Altogether our data suggest a novel MPL-independent role for CALR mutations in the development of MPNs. On one side, by affecting the ability to respond to the ER stress, CALR mutants confer resistance to ER stress mediated apoptosis. On the other side, by affecting cell sensitivity to oxidative stress and reducing the capability to respond to oxidative DNA damage, CALR mutants might lead to genomic instability and tendency to accumulate further mutations. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document