scholarly journals Spatial and Temporal Analysis of the Microbial Community in Slow Sand Filters Used for Treating Horticultural Irrigation Water

2003 ◽  
Vol 69 (4) ◽  
pp. 2116-2125 ◽  
Author(s):  
Leo A. Calvo-Bado ◽  
Tim R. Pettitt ◽  
Nick Parsons ◽  
Geoff M. Petch ◽  
J. Alun W. Morgan ◽  
...  

ABSTRACT An experimental slow sand filter (SSF) was constructed to study the spatial and temporal structure of a bacterial community suppressive to an oomycete plant pathogen, Phytophthora cryptogea. Passage of water through the mature sand column resulted in complete removal of zoospores of the plant pathogen. To monitor global changes in the microbial community, bacterial and fungal numbers were estimated on selective media, direct viable counts of fungal spores were made, and the ATP content was measured. PCR amplification of 16S rRNA genes and denaturing gradient gel electrophoresis (DGGE) were used to study the dynamics of the bacterial community in detail. The top layer (1 cm) of the SSF column was dominated by a variable and active microbial population, whereas the middle (50 cm) and bottom (80 cm) layers were dominated by less active and diverse bacterial populations. The major changes in the microbial populations occurred during the first week of filter operation, and these populations then remained to the end of the study. Spatial and temporal nonlinear mapping of the DGGE bands provided a useful visual representation of the similarities between SSF samples. According to the DGGE profile, less than 2% of the dominating bands present in the SSF column were represented in the culturable population. Sequence analysis of DGGE bands from all depths of the SSF column indicated that a range of bacteria were present, with 16S rRNA gene sequences similar to groups such as Bacillus megaterium, Cytophaga, Desulfovibrio, Legionella, Rhodococcus rhodochrous, Sphingomonas, and an uncharacterized environmental clone. This study describes the characterization of the performance, and microbial composition, of SSFs used for the treatment of water for use in the horticultural industry. Utilization of naturally suppressive population of microorganisms either directly or by manipulation of the environment in an SSF may provide a more reproducible control method for the future.

2007 ◽  
Vol 73 (19) ◽  
pp. 6089-6097 ◽  
Author(s):  
Sylvain Bordenave ◽  
María Soledad Goñi-Urriza ◽  
Pierre Caumette ◽  
Robert Duran

ABSTRACT The effects of petroleum contamination on the bacterial community of a pristine microbial mat from Salins-de-Giraud (Camargue, France) have been investigated. Mats were maintained as microcosms and contaminated with no. 2 fuel oil from the wreck of the Erika. The evolution of the complex bacterial community was monitored by combining analyses based on 16S rRNA genes and their transcripts. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analyses clearly showed the effects of the heavy fuel oil after 60 days of incubation. At the end of the experiment, the initial community structure was recovered, illustrating the resilience of this microbial ecosystem. In addition, the responses of the metabolically active bacterial community were evaluated by T-RFLP and clone library analyses based on 16S rRNA. Immediately after the heavy fuel oil was added to the microcosms, the structure of the active bacterial community was modified, indicating a rapid microbial mat response. Members of the Gammaproteobacteria were initially dominant in the contaminated microcosms. Pseudomonas and Acinetobacter were the main genera representative of this class. After 90 days of incubation, the Gammaproteobacteria were superseded by “Bacilli” and Alphaproteobacteria. This study shows the major changes that occur in the microbial mat community at different time periods following contamination. At the conclusion of the experiment, the RNA approach also demonstrated the resilience of the microbial mat community in resisting environmental stress resulting from oil pollution.


2021 ◽  
Author(s):  
Regan Nicholaus ◽  
Betina Lukwambe ◽  
Wen Yang ◽  
Zhongming Zheng

Constructed-wetlands, Biofilms, and sedimentation are potential aquaculture tail-water treatments however their roles on the distribution of benthic microbial community and the way they affect the interaction between microbial community and inorganic nutrient fluxes have not been fully explored. This study applied 16S rRNA high-throughput sequencing technology to investigate the microbial community distribution and their link with nutrient fluxes in an aquaculture tail- water bioremediation system . Results showed that bacterial community compositions were significantly different in constructed-wetland and biofilm treatments (p<0.05) relative to sedimentation. The composition of the 16S rRNA genes among all the treatments was enriched with Proteobacteria, Bacteroidetes, Firmicutes, and Flavobacteria . NMDS analysis showed that the bacterial composition in constructed-wetland and biofilm samples clustered separately compared to those in sedimentation. The Functional-Annotation-of-Prokaryotic-Taxa analysis indicated that the proportions of sediment-microbial-functional groups (aerobic-chemoheterophy, chemoheterotrophy, and nitrate-ammonification combined) in the constructed-wetland treatment were 47%, 32% in biofilm and 13% in sedimentation system. Benthic-nutrient fluxes for phosphate, ammonium, nitrite, nitrate and sediment oxygen consumption differed markedly among the treatments ( p<0.05 ). Canonical correspondence analysis indicated constructed-wetland had the strongest association between biogeochemical contents and the bacterial community relative to other treatments. This study suggests that the microbial community distributions and their interactions nutrient fluxes were most improved in the constructed-wetland followed by the area under biofilm and sedimentation treatment.


2005 ◽  
Vol 71 (12) ◽  
pp. 7750-7758 ◽  
Author(s):  
Anja B. Dohrmann ◽  
Christoph C. Tebbe

ABSTRACT Current elevated concentrations of ozone in the atmosphere, as they are observed during summer seasons, can cause severe effects on plant vegetation. This study was initiated to analyze whether ozone-stressed plants also transfer signals below ground and thereby alter the bacterial community composition in their rhizospheres. Herbaceous plants, native to Germany, with tolerance (Anthoxanthum odoratum, Achillea millefolium, Poa pratensis, Rumex acetosa, and Veronica chamaedrys) and sensitivity (Matricaria chamomilla, Sonchus asper, and Tanacetum vulgare) to ozone, raised in the greenhouse, were exposed in open-top chambers to two different ozone regimes, i.e., “summer stress” and a normal ozone background. DNA of bacterial cells from the rhizospheres was directly extracted, and partial sequences of the 16S rRNA genes were PCR amplified with primers targeting the following phylogenetic groups: Bacteria, α-Proteobacteria, Actinobacteria, and Pseudomonas, respectively. The diversity of the amplified products was analyzed by genetic profiling based on single-strand conformation polymorphism (SSCP). Neither the tolerant nor the sensitive plants, the latter with visible above-ground damage, showed ozone-induced differences in any of the SSCP profiles, with the single exception of Actinobacteria-targeted profiles from S. asper. To increase the stress, S. asper was germinated and raised in the continuous presence of an elevated level of ozone. SSCP profiles with Bacteria-specific primers combined with gene probe hybridizations indicated an ozone-related increase in a Xanthomonas-related 16S rRNA gene and a decrease in the respective gene from the plant plastids. The fact that only this latter unrealistic scenario caused a detectable effect demonstrated that ozone stress has a surprisingly small effect on the structural diversity of the bacterial community in rhizospheres.


2021 ◽  
Vol 10 (27) ◽  
Author(s):  
Nur Indradewi Oktavitri ◽  
Jong-Oh Kim ◽  
Kyunghoi Kim

Benthic microbial diversity in Tongyeong, South Korea, was analyzed using next-generation sequencing of the 16S rRNA genes, to reveal the effects of seasonal variations on the microbial community in sediment. Proteobacteria was the dominant phylum, with a relative abundance of 61.5 to 68.1%.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6768
Author(s):  
Matheus A.P. Cipriano ◽  
Afnan K.A. Suleiman ◽  
Adriana P.D. da Silveira ◽  
Janaína B. do Carmo ◽  
Eiko E. Kuramae

The use of residue of sugarcane ethanol industry named vinasse in fertirrigation is an established and widespread practice in Brazil. Both non-concentrated vinasse (NCV) and concentrated vinasse (CV) are used in fertirrigation, particularly to replace the potassium fertilizer. Although studies on the chemical and organic composition of vinasse and their impact on nitrous oxide emissions when applied in soil have been carried out, no studies have evaluated the microbial community composition and diversity in different forms of vinasse. We assessed the bacterial community composition of NCV and CV by non-culturable and culturable approaches. The non-culturable bacterial community was assessed by next generation sequencing of the 16S rRNA gene and culturable community by isolation of bacterial strains and molecular and biochemical characterization. Additionally, we assessed in the bacterial strains the presence of genes of nitrogen cycle nitrification and denitrification pathways. The microbial community based on16S rRNAsequences of NCV was overrepresented by Bacilli and Negativicutes while CV was mainly represented by Bacilli class. The isolated strains from the two types of vinasse belong to class Bacilli, similar toLysinibacillus, encode fornirKgene related to denitrification pathway. This study highlights the bacterial microbial composition particularly in CV what residue is currently recycled and recommended as a sustainable practice in sugarcane cultivation in the tropics.


1999 ◽  
Vol 65 (4) ◽  
pp. 1662-1669 ◽  
Author(s):  
John Dunbar ◽  
Shannon Takala ◽  
Susan M. Barns ◽  
Jody A. Davis ◽  
Cheryl R. Kuske

ABSTRACT Techniques based on amplification of 16S rRNA genes for comparing bacterial communities are now widely used in microbial ecology, but calibration of these techniques with traditional tools, such as cultivation, has been conspicuously absent. In this study, we compared levels of bacterial community diversity in two pinyon rhizosphere soil samples and two between-tree (interspace) soil samples by analyzing 179 cultivated bacterial isolates and 801 16S rRNA genes amplified from extracted soil DNA. Phylotypes were defined by performing a restriction fragment length polymorphism analysis of 16S rRNA gene sequences with the enzymes RsaI and BstUI. The average level of 16S rRNA gene sequence similarity of members of a phylotype was 86.6% based on an analysis of partial sequences. A total of 498 phylotypes were identified among the 16S ribosomal DNA (rDNA) clones, while 34 phylotypes occurred among the cultivated isolates. Analysis of sequences from a subset of the phylotypes showed that at least seven bacterial divisions were represented in the clone libraries, whereas the isolates represented only three. The phylotype richness, frequency distribution (evenness), and composition of the four culture collections and the four clone libraries were investigated by using a variety of diversity indices. Although cultivation and 16S rRNA cloning analyses gave contradictory descriptions of the relative phylotype richness for one of the four environments, the two methods identified qualitatively consistent relationships when levels of evenness were compared. The levels of phylotype similarity between communities were uniformly low (15 to 31%). Both methods consistently indicated that one environment was distinct from the other three. Our data illustrate that while 16S rDNA cloning and cultivation generally describe similar relationships between soil microbial communities, significant discrepancies can occur.


2004 ◽  
Vol 70 (1) ◽  
pp. 293-300 ◽  
Author(s):  
Nichole A. Broderick ◽  
Kenneth F. Raffa ◽  
Robert M. Goodman ◽  
Jo Handelsman

ABSTRACT Little is known about bacteria associated with Lepidoptera, the large group of mostly phytophagous insects comprising the moths and butterflies. We inventoried the larval midgut bacteria of a polyphagous foliivore, the gypsy moth (Lymantria dispar L.), whose gut is highly alkaline, by using traditional culturing and culture-independent methods. We also examined the effects of diet on microbial composition. Analysis of individual third-instar larvae revealed a high degree of similarity of microbial composition among insects fed on the same diet. DNA sequence analysis indicated that most of the PCR-amplified 16S rRNA genes belong to the γ-Proteobacteria and low G+C gram-positive divisions and that the cultured members represented more than half of the phylotypes identified. Less frequently detected taxa included members of the α-Proteobacterium, Actinobacterium, and Cytophaga/Flexibacter/Bacteroides divisions. The 16S rRNA gene sequences from 7 of the 15 cultured organisms and 8 of the 9 sequences identified by PCR amplification diverged from previously reported bacterial sequences. The microbial composition of midguts differed substantially among larvae feeding on a sterilized artificial diet, aspen, larch, white oak, or willow. 16S rRNA analysis of cultured isolates indicated that an Enterococcus species and culture-independent analysis indicated that an Entbacter sp. were both present in all larvae, regardless of the feeding substrate; the sequences of these two phylotypes varied less than 1% among individual insects. These results provide the first comprehensive description of the microbial diversity of a lepidopteran midgut and demonstrate that the plant species in the diet influences the composition of the gut bacterial community.


2015 ◽  
Vol 81 (20) ◽  
pp. 7114-7124 ◽  
Author(s):  
Kenly A. Hiller ◽  
Kenneth H. Foreman ◽  
David Weisman ◽  
Jennifer L. Bowen

ABSTRACTPermeable reactive barriers (PRBs) consist of a labile carbon source that is positioned to intercept nitrate-laden groundwater to prevent eutrophication. Decomposition of carbon in the PRB drives groundwater anoxic, fostering microbial denitrification. Such PRBs are an ideal habitat to examine microbial community structure under high-nitrate, carbon-replete conditions in coastal aquifers. We examined a PRB installed at the Waquoit Bay National Estuarine Research Reserve in Falmouth, MA. Groundwater within and below the PRB was depleted in oxygen compared to groundwater at sites upgradient and at adjacent reference sites. Nitrate concentrations declined from a high of 25 μM upgradient and adjacent to the barrier to <0.1 μM within the PRB. We analyzed the total and active bacterial communities filtered from groundwater flowing through the PRB using amplicons of 16S rRNA and of the 16S rRNA genes. Analysis of the 16S rRNA genes collected from the PRB showed that the total bacterial community had high relative abundances of bacteria thought to have alternative metabolisms, such as fermentation, including candidate phyla OD1, OP3, TM7, and GN02. In contrast, the active bacteria had lower abundances of many of these bacteria, suggesting that the bacterial taxa that differentiate the PRB groundwater community were not actively growing. Among the environmental variables analyzed, dissolved oxygen concentration explained the largest proportion of total community structure. There was, however, no significant correlation between measured environmental parameters and the active microbial community, suggesting that controls on the active portion may differ from the community as a whole.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6496 ◽  
Author(s):  
Gemma Henderson ◽  
Pelin Yilmaz ◽  
Sandeep Kumar ◽  
Robert J. Forster ◽  
William J. Kelly ◽  
...  

The taxonomy and associated nomenclature of many taxa of rumen bacteria are poorly defined within databases of 16S rRNA genes. This lack of resolution results in inadequate definition of microbial community structures, with large parts of the community designated as incertae sedis, unclassified, or uncultured within families, orders, or even classes. We have begun resolving these poorly-defined groups of rumen bacteria, based on our desire to name these for use in microbial community profiling. We used the previously-reported global rumen census (GRC) dataset consisting of >4.5 million partial bacterial 16S rRNA gene sequences amplified from 684 rumen samples and representing a wide range of animal hosts and diets. Representative sequences from the 8,985 largest operational units (groups of sequence sharing >97% sequence similarity, and covering 97.8% of all sequences in the GRC dataset) were used to identify 241 pre-defined clusters (mainly at genus or family level) of abundant rumen bacteria in the ARB SILVA 119 framework. A total of 99 of these clusters (containing 63.8% of all GRC sequences) had no unique or had inadequate taxonomic identifiers, and each was given a unique nomenclature. We assessed this improved framework by comparing taxonomic assignments of bacterial 16S rRNA gene sequence data in the GRC dataset with those made using the original SILVA 119 framework, and three other frameworks. The two SILVA frameworks performed best at assigning sequences to genus-level taxa. The SILVA 119 framework allowed 55.4% of the sequence data to be assigned to 751 uniquely identifiable genus-level groups. The improved framework increased this to 87.1% of all sequences being assigned to one of 871 uniquely identifiable genus-level groups. The new designations were included in the SILVA 123 release (https://www.arb-silva.de/documentation/release-123/) and will be perpetuated in future releases.


2009 ◽  
Vol 71-73 ◽  
pp. 67-70 ◽  
Author(s):  
Inez J.T. Dinkla ◽  
Mariekie Gericke ◽  
B.K. Geurkink ◽  
Kevin B. Hallberg

Bioleaching test work was performed in continuously operated multi-stage reactor systems at 70°C using a thermophilic culture treating an Aguablanca Ni-Cu concentrate from Spain and a blend of Cu concentrates from Bor, Serbia. The copper in both these concentrates occurs as chalcopyrite and therefore the use of thermophiles was applied, which resulted in copper recoveries of over 95%. Qualitative assessment of the microbial community in the bioreactors was performed by terminal restriction enzyme fragment length polymorphism (T-RFLP) and clone library analysis of the 16S rRNA genes amplified by PCR. T-RFLP analysis revealed that only archaea were present, and that the communities in both the Aguablanca and Bor systems consisted of two different microorganisms. A 16S rRNA gene clone library using DNA from the Aguablanca system was constructed and screened. Again, two archaea were detected in similar relative abundance in the population as found by T-RFLP analyses. The sequences of these two cloned genes revealed that the dominant archaeon (up to 98% of the total archaea detected) was Acidianus brierleyi, and the other was Metallosphaera sedula. Quantitative assessment of the microbial community was performed by Q-PCR and confirmed the dominance of archaea in the system with Acidianus being the dominant strain (98-99% of the total population) and a minor part of the population (1-2%) consisted of Metallosphaera. Additionally, very small amounts of Sulfolobus spp. were detected. This study, along with other recent studies on the diversity of thermoacidophiles involved in the solubilization of copper from chalcopyrite concentrates, revealed that a wider variety of thermoacidophiles are involved in bioprocessing of metal sulfides, and showed that A. brierleyi should be considered an important biomining acidophile.


Sign in / Sign up

Export Citation Format

Share Document