scholarly journals Increasing Secretion of a Bivalent Anti-T-Cell Immunotoxin by Pichia pastoris

2004 ◽  
Vol 70 (6) ◽  
pp. 3370-3376 ◽  
Author(s):  
Jung Hee Woo ◽  
Yuan Yi Liu ◽  
Scott Stavrou ◽  
David M. Neville

ABSTRACT The bivalent anti-T-cell immunotoxin A-dmDT390-bisFv(G4S) was developed for treatment of T-cell leukemia and autoimmune diseases and for tolerance induction for transplantation. This immunotoxin was produced extracellularly in toxin-sensitive Pichia pastoris JW102 (Mut+ ) under control of the AOX1 promoter. There were two major barriers to efficient immunotoxin production, the toxicity of the immunotoxin for P. pastoris and the limited capacity of P. pastoris to secrete the immunotoxin. The immunotoxin toxicity resulted in a decrease in the methanol consumption rate, cessation of cell growth, and low immunotoxin productivity after the first 22 h of methanol induction. Continuous cell growth and continuous immunotoxin secretion after the first 22 h of methanol induction were obtained by adding glycerol to the methanol feed by using a 4:1 methanol-glycerol mixed feed as an energy source and by continuously adding a yeast extract solution during methanol induction. The secretory capacity was increased from 22.5 to 37 mg/liter by lowering the induction temperature. A low temperature reduced the methanol consumption rate and protease activity in the supernatant but not cell growth. The effects of adding glycerol and yeast extract to the methanol feed were synergistic. Adding yeast extract primarily enhanced methanol utilization and cell growth, while adding glycerol primarily enhanced immunotoxin production. The synergy was further enhanced by decreasing the induction temperature from 23 to 15�C, which resulted in a robust process with a yield of 37 mg/liter, which was sevenfold greater than the yield previously reported for a toxin-resistant CHO cell expression system. This methodology should be applicable to other toxin-related recombinant proteins in toxin-sensitive P. pastoris.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jianrong Wang ◽  
Yangyuan Li ◽  
Danni Liu

A series of strategies were applied to improve expression level of recombinant endo-β-1,4-xylanase fromAspergillus usamii(A. usamii) inPichia pastoris(P. pastoris). Firstly, the endo-β-1,4-xylanase (xynB) gene fromA. usamiiwas optimized forP. pastorisand expressed inP. pastoris. The maximum xylanase activity of optimized (xynB-opt) gene was 33500 U/mL after methanol induction for 144 h in 50 L bioreactor, which was 59% higher than that by wild-type (xynB) gene. To further increase the expression ofxynB-opt, theVitreoscilla hemoglobin(VHb) gene was transformed to the recombinant strain containingxynB-opt. The results showed that recombinant strain harboring thexynB-optandVHb(named X33/xynB-opt-VHb) displayed higher biomass, cell viability, and xylanase activity. The maximum xylanase activity of X33/xynB-opt-VHbin 50 L bioreactor was 45225 U/mL, which was 35% and 115% higher than that by optimized (xynB-opt) gene and wild-type (xynB) gene. Finally, the induction temperature of X33/xynB-opt-VHbwas optimized in 50 L bioreactor. The maximum xylanase activity of X33/xynB-opt-VHbreached 58792 U/mL when the induction temperature was 22°C. The results presented here will greatly contribute to improving the production of recombinant proteins inP. pastoris.


2021 ◽  
Vol 29 (1) ◽  
pp. 22-30
Author(s):  
Dini Nurdiani ◽  
Hariyatun Hariyatun ◽  
Nuruliawaty Utami ◽  
Eko Wahyu Putro ◽  
Wien Kusharyoto

Pichia pastoris is an alternative yeast expression system to produce heterologous proteins. It has excellent characteristics for an industrial cell factory, such as its ability to reach high cell densities, high secretory capacity, and a low level of native proteins. In our previous study, we introduced a synthetic insulin precursor (IP)-encoding gene constructed in a pD902 expression vector into P. pastoris. However, the P. pastoris recombinant strains expressed a little amount of IP protein. Here, we modified the expression conditions, including inoculum density, methanol concentration, methanol induction time, pH, and temperature, to obtain a higher amount of secreted IP than our previous result. Protein analysis for studying the five parameters was conducted by SDS-PAGE, and the protein amount was estimated by ImageJ applying lysozyme as standard. We successfully enhanced the IP expression by modifying expression conditions. The highest increased of up to 100 folds was achieved when methanol concentration for induction was arranged at 3% (v/v), and the initial cell density for methanol induction was set at an optical density at 600 nm (OD600) of approximately 10 compared to the standard procedure, where the expression was set at 0.5% (v/v) methanol induction and initial cell density at OD600 = 1.


Author(s):  
Rafid A. Abdulkareem

The main goal of the current study was cloning and expression of the human insulin gene in Pichia pastoris expression system, using genetic engineering techniques and its treatment application. Total RNA was purified from fresh normal human pancreatic tissue. RNA of good quality was chosen to obtain a first single strand cDNA. Human preproinsulin gene was amplified from cDNA strand, by using two sets of specific primers contain EcoR1 and Notl restriction sites. The amplified preproinsulin gene fragment was double digested with EcoRI and Not 1 restriction enzymes, then inserted into pPIC9K expression vector. The new pPIC9K-hpi constructive expression vector was transformed by the heat-shock method into the E.coli DH5α competent cells. pPic9k –hpi, which was propagated in the positive transformant E. coli cells, was isolated from cells and then linearised by restriction enzyme SalI, then transformed into Pichia pastoris GS115 using electroporation method. Genomic DNA of His+ transformants cell was extracted and used as a template for PCR analysis. The results showed, that the pPic9k – hpi was successfully integrated into the P. pastoris genome, for selected His+ transformants clones on the anticipated band at 330 bp, which is corresponded to the theoretical molecular size of the human insulin gene. To follow the insulin expression in transformans, Tricine–SDS gel electrophoresis and Western blot analysis were conducted. The results showed a successful expression of recombinant protein was detected by the presence of a single major band with about (5.8 KDa) on the gel. These bands correspond well with the size of human insulin with the theoretical molecular weight (5.8 KDa).


1990 ◽  
Vol 55 (3) ◽  
pp. 854-866 ◽  
Author(s):  
Rodríguez V. Bravo ◽  
Rubio F. Camacho ◽  
Villasclaras S. Sánchez ◽  
Vico M. Castro

The ethanolic fermentation in batch cultures of Pachysolen tannophilus was studied experimentally varying the initial concentrations of two of the components in the culture medium: glucose between 0 and 200 g l-1 and yeast extract between 0 and 8 g l-1. The yeast extract appears to be a significant component both in cell growth and for ethanol production.


2013 ◽  
Vol 30 (1) ◽  
pp. 1-18 ◽  
Author(s):  
A. Contreras-Gómez ◽  
A. Sánchez-Mirón ◽  
F. García-Camacho ◽  
E. Molina-Grima ◽  
Y. Chisti

Sign in / Sign up

Export Citation Format

Share Document