scholarly journals Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System

2005 ◽  
Vol 71 (1) ◽  
pp. 276-281 ◽  
Author(s):  
Fuli Li ◽  
Ping Xu ◽  
Jinhui Feng ◽  
Ling Meng ◽  
Yuan Zheng ◽  
...  

ABSTRACT Mycobacterium goodii X7B, which had been primarily isolated as a bacterial strain capable of desulfurizing dibenzothiophene to produce 2-hydroxybiphenyl via the 4S pathway, was also found to desulfurize benzothiophene. The desulfurization product was identified as o-hydroxystyrene by gas chromatography (GC)-mass spectrometry analysis. This strain appeared to have the ability to remove organic sulfur from a broad range of sulfur species in gasoline. When Dushanzi straight-run gasoline (DSRG227) containing various organic sulfur compounds was treated with immobilized cells of strain X7B for 24 h, the total sulfur content significantly decreased, from 227 to 71 ppm at 40�C. GC flame ionization detection and GC atomic emission detection analysis were used to qualitatively evaluate the effects of M. goodii X7B treatment on the contents of gasoline. In addition, when immobilized cells were incubated at 40�C with DSRG275, the sulfur content decreased from 275 to 54 ppm in two consecutive reactions. With this excellent efficiency, strain X7B is considered a good potential candidate for industrial applications for the biodesulfurization of gasoline.

Biologia ◽  
2012 ◽  
Vol 67 (5) ◽  
Author(s):  
Maegala Nallapan Maniyam ◽  
Fridelina Sjahrir ◽  
Abdul Ibrahim ◽  
Anthony Cass

AbstractAnthropogenic sources contribute to the bulk presence of cyanide, which causes substantial health and environmental concerns. A petroleum-contaminated soil isolate, Rhodococcus UKMP-5M has been verified to efficiently degrade high concentration of cyanide in the form of KCN in our previous study. In order to enhance the cyanide-degrading ability of this bacterium, different encapsulation matrices were screened to immobilize cells of Rhodococcus UKMP-5M for degradation of cyanide. It was revealed that the biocatalyst activity and bead mechanical strength improved significantly when calcium alginate encapsulation technique was employed as compared to free cells. The results also indicated that the immobilized cell system could tolerate a higher level of KCN concentration and were able to support a higher biomass density. In addition, the embedded cells retained almost 96% of their initial cyanide removal efficiency during the first five batches and the entrapped cell system maintained 64% of its initial activity after eight successive batches. The encapsulated beads could be easily recovered from the production medium and reused for up to five batches without significant losses of cyanide-degrading ability, which proved to be advantageous from an economic point of view. From this study, it could be inferred that the novel Rhodococcus UKMP-5M strain demonstrated high cyanide-degrading ability and the optimized calcium alginate immobilization technique provided a promising alternative for practical application of large scale remediation of cyanide-bearing wastewaters.


1996 ◽  
Vol 34 (10) ◽  
pp. 51-58 ◽  
Author(s):  
Chen Wen-Chin ◽  
Cheng Sheng-Shung

Because of the presence of refractory and biologically inhibitory organic compounds in ABS resin wastewater, which would retard the bioactivity of the autotrophic nitrifier and make the efficiency of nitrification process unstable, the application of cell immobilization for ABS wastewater treatment has been investigated by immobilizing the enrichment culture of nitrifying bacteria with alginate. The characterization of the immobilized cells in various alignate concentrations was conducted by a series of biodegradability studies with electrolytic respirometry and compared with the differences from the dispersed cells. Results clearly indicated that immobilized cells achieved higher efficiency of COD and TKN removal than that of the dispersed cells during the period of high initial concentration of wastewater. Meanwhile, high concentration of cells were growing near the gel surface and reduced the effects of diffusional restriction. No remarkable difference was found while the concentration of alginate ranged from 3% to 5%. According to mass balance of total nitrogen, more than 25% of total nitrogen was removed in the batch system of the immobilized cell. Simultaneous nitrification and denitrification could occur due to the oxygen gradient throughout the gel matrix. Compared with the complete mixing system of the dispersed cell, the approach for the immobilized-cell system provided a more effective method for treating the special wastewater with high strength of nitrogenous and inhibitory compounds.


2000 ◽  
Vol 66 (3) ◽  
pp. 1190-1194 ◽  
Author(s):  
M. Martín ◽  
G. Mengs ◽  
E. Plaza ◽  
C. Garbi ◽  
M. Sánchez ◽  
...  

ABSTRACT A bacterial strain capable of growing on propachlor (2-chloro-N-isopropylacetanilide) was isolated from soil by using enrichment and isolation techniques. The strain isolated, designated GCH1, was classified as a member of the genusPseudomonas. Washed-cell suspensions of strain GCH1 accumulated N-isopropylacetanilide, acetanilide, acetamide, and catechol. Pseudomonas strain GCH1 grew on propachlor with a generation time of 4.2 h and a rate of substrate utilization of 1.75 ± 0.15 μmol h−1. Gene expression did not require induction but was subject to catabolite expression. Acetanilide was a growth substrate with a yield of 0.56 ± 0.02 mg of protein μmol−1. GCH1 strain cells were immobilized by adsorption onto a ceramic support and were used as biocatalysts in an immobilized cell system. Propachlor elimination reached 98%, with a retention time of 3 h and an initial organic load of 0.5 mM propachlor. The viability of immobilized cells increased 34-fold after 120 days of bioreactor operation.


The development of immobilized enzyme and cell technology is summarized. Industrial processes for sucrose inversion, penicillin deacylation and glucose isomerization using immobilized enzymes are described. An alternative process for glucose isomerization using immobilized cells, and some other industrial applications of immobilized cells are indicated. Recent developments in immobilized enzyme and cell technology are assessed and the relative merits of the different biochemical catalyst forms are considered.


2005 ◽  
pp. 129-141 ◽  
Author(s):  
Ida Leskosek-Cukalov ◽  
Viktor Nedovic

Immobilized cell technology (ICT) has been attracting continual attention in the brewing industry over the past 30 years. Some of the reasons are: faster fermentation rates and increased volumetric productivity, compared to those of traditional beer production based on freely suspended cells, as well as the possibility of continuous operation. Nowadays, ICT technology is well established in secondary fermentation and alcohol- free and low-alcohol beer production. In main fermentation, the situation is more complex and this process is still under scrutiny on both the lab and pilot levels. The paper outlines the most important ICT processes developed for beer brewing and provides an overview of carrier materials, bioreactor design and examples of their industrial applications, as well as some recent results obtained by our research group. We investigated the possible applications of polyvinyl alcohol in the form of LentiKats?, as a potential porous matrices carrier for beer fermentation. Given are the results of growth studies of immobilized brewer's yeast Saccharomyces uvarum and the kinetic parameters obtained by using alginate microbeads with immobilized yeast cells and suspension of yeast cells as controls. The results indicate that the immobilization procedure in LentiKat? carriers has a negligible effect on cell viability and growth. The apparent specific growth rate of cells released in medium was comparable to that of freely suspended cells, implying preserved cell vitality. A series of batch fermentations performed in shaken flasks and an air-lift bioreactor indicated that the immobilized cells retained high fermentation activity. The full attenuation in green beer was reached after 48 hours in shaken flasks and less than 24 hours of fermentation in gas-lift bioreactors.


2008 ◽  
Vol 58 (11) ◽  
pp. 2155-2163 ◽  
Author(s):  
Sumana Siripattanakul ◽  
Wanpen Wirojanagud ◽  
John M. McEvoy ◽  
Francis X. M. Casey ◽  
Eakalak Khan

Bench-scale sand column breakthrough experiments were conducted to examine atrazine remediation in agricultural infiltrate by Agrobacterium radiobacter J14a (J14a) immobilized in phosphorylated-polyvinyl alcohol compared to free J14a cells. The effects of cell loading and infiltration rate on atrazine degradation and the loss of J14a were investigated. Four sets of experiments, i) tracers, ii) immobilized dead cells, iii) immobilized cells, and iv) free cells, were performed. The atrazine bioremediation at the cell loadings of 300, 600, and 900 mg dry cells l−1 and the infiltration rates of 1, 3, and 6 cm d−1 were tested for 5 column pore volumes (PV). The atrazine breakthrough results indicated that the immobilized dead cells significantly retarded atrazine transport. The atrazine removal efficiencies at the infiltration rates of 1, 3, and 6 cm d−1 were 100%, 80–97%, and 50–70% respectively. Atrazine remediation capacity for the immobilized cells was not significantly different from the free cells. Both infiltration rate and cell loading significantly affected atrazine removal for both cell systems. The bacterial loss from the immobilized cell system was 10 to 100 times less than that from the free cell system. For long-term tests at 50 PV, the immobilized cell system provided consistent atrazine removal efficiency while the atrazine removal by the free cells declined gradually because of the cell loss.


2020 ◽  
Author(s):  
Friedel Drepper ◽  
Jacek Biernat ◽  
Senthillvelrajan Kaniyappan ◽  
Helmut E. Meyer ◽  
Eva Maria Mandelkow ◽  
...  

AbstractAbnormal changes in the neuronal microtubule-associated protein Tau, such as hyperphosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer disease. Hyperphosphorylation is thought to take place before aggregation, and therefore it is often assumed that phosphorylation predisposes Tau towards aggregation. However, the nature and extent of phosphorylation has remained ill-defined. Tau protein contains up to 85 potential phosphorylation sites (80 Ser/Thr, and 5 Tyr P-sites), many of which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible. However, limitations in methods (e.g. in mass spectrometry of phosphorylated peptides, or antibodies against phospho-epitopes) have led to conflicting results regarding the overall degree of phosphorylation of Tau in cells. Here we present results from a new approach, that is based on native mass spectrometry analysis of intact Tau expressed in a eukaryotic cell system (Sf9) which reveals Tau in different phosphorylation states. The extent of phosphorylation is remarkably heterogeneous with up to ∼20 phosphates (Pi) per molecule and distributed over 51 sites (including all P-sites published so far and additional 18 P-sites). The medium phosphorylated fraction Pm showed overall occupancies centered at 8 Pi (± 5 Pi) with a bell-shaped distribution, the highly phosphorylated fraction Ph had 14 Pi (± 6 Pi). The distribution of sites was remarkably asymmetric (with 71% of all P-sites located in the C-terminal half of Tau). All phosphorylation sites were on Ser or Thr residues, but none on Tyr. Other known posttranslational modifications of Tau were near or below our detection limit (e.g. acetylation, ubiquitination). None of the Tau fractions self-assemble readily, arguing that Tau aggregation is not promoted by phosphorylation per se but requires additional factors.


2020 ◽  
Author(s):  
Nayara Rodrigues Vieira Cavassan ◽  
Noemia Aparecida Partelli Mariani ◽  
Caio Cavassan Camargo ◽  
Ivan Rodrigo Wolf ◽  
Benedito Barraviera ◽  
...  

ABSTRACTSeeking and identifying biomarker molecules in inflammatory exudate of chronic venous ulcers (CVUs) can aid health professionals in the healing prognosis. The therapeutic failure or cure is related to the quantitative expression of determinate proteins. This work aimed to identify the proteins expressed in inflammatory exudates from CVUs and correlate them with reduction or increase in the wound size. For 90 days, 28 participants that received standard treatment for 37 CVUs were monitored. The inflammatory exudates were collected before treatment initiation (T=0) and analyzed via the Label-free Shotgun. After 90 days the wound area was reduced in 25 (67.6%) of them. Mass spectrometry analysis of all the inflammatory exudates showed four proteins differentially expressed and related to favorable or unfavorable evolution of the healing process. Complement C3 and ceruloplasmin were identified in all the lesions analyzed and were expressed differentially in lesions that presented diminished area in the studied period. Apoliprotein A1 and neutrophil defensin-1 presented differential expression in ulcers that either did not diminish or augmented their wound area through 90 days. These results suggest that Complement C3, Ceruloplasmin, Apoliprotein A1 and Neutrophil-defensin-1 proteins are potential candidate molecules for prognostic healing markers in chronic venous ulcers.


Sign in / Sign up

Export Citation Format

Share Document