ceramic support
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 27)

H-INDEX

19
(FIVE YEARS 2)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Francisco José Sánchez-Borrego ◽  
Tomás Juan Barea de Hoyos-Limón ◽  
Juan Francisco García-Martín ◽  
Paloma Álvarez-Mateos

Olive stones are a by-product of the olive oil industry. In this work, the valorisation of olive stones through pyrolysis was attempted. Before pyrolysis, half of the samples were impregnated with sulphuric acid. Pyrolysis was carried out in a vertical tubular furnace with a ceramic support. The pyrolysis conditions assayed were: temperature between 400 and 600 °C, heating ramp between 5 and 20 °C∙min−1, and inert gas flow rate between 50 and 300 mL Ar∙min−1. Among them, temperature was the only parameter that influenced the pyrolysis product distribution. The most suitable temperature for obtaining biochar was 400 °C for both non-treated and pre-treated raw material, while for obtaining bio-oil, it was 600 °C for impregnated olive stones and 400 °C for the raw material. The impregnated olives stones led to bio-oils with much higher amounts of high-added-value products such as levoglucosenone and catechol. Finally, the biochars were impregnated with sulphuric acid and assayed as biocatalysts for the esterification of oleic acid with methanol in a stirred tank batch reactor at 60 °C for 30 min. Biochars from non-treated olive stones, which had lower specific surfaces, led to higher esterification yields (up to 96.2%).


2021 ◽  
Vol 25 (3) ◽  
pp. 1-15
Author(s):  
M. Ait Baih ◽  
N. Saffaj ◽  
A. Bakka ◽  
R. Mamouni ◽  
N. El baraka ◽  
...  

In the present study, the effect of Sintering temperature, Particle size and Heating rate of the ceramic support membrane Elaboration based on dry clay were evaluated using full factorial design and investigated by porosity and mechanical strength measures. The flat supports have been prepared from 5 g of the material with a two fraction 2 and 30 µm, the extrusion was performed using the uniaxial pressing in applicant a pressure of 12 tones, the supports sintered between 900° C and 1200°C with a different heating rate (1°C/min and 10°C/min). By using full factorial design 23, it was found that the sintering temperature is the main controlling factors of the physical properties of dry ceramic support membrane, and its increase had a positive effect on Mechanical strength and negative effect on porosity. The interactions between the factors were relatively less important, and they had different (antagonistic/synergetic) influence on the properties. The optimal factors to elaborate the support membrane include a particle size of 2 µm, sintering temperature of 950°C, Heating rate of 1°C predicting the porosity of 40, 8% and Mechanical strength of 12 MPa.


2021 ◽  
Author(s):  
Tanushree Choudhury

Most of NF membranes which are developed recently are composite membranes, whose support layer is covered with an active layer. Among different ceramic support materials that are currently used as support layer, α-alumina supports are integral part of the membrane which is made of artificial materials like alumina and thus adds to the high price of the membrane. This draws our attention in making low cost support material of natural clay which aims to be an excellent membrane support as it possesses high mechanical strength, high permeability, narrow pore size distribution and low manufacturing cost. Titania as active layer for ceramic membrane is preferred over Al2O3 membranes. One of the problems encountered when photocatalysts are immobilized on support is the detachment of the micro particles from the support for high flow rates of liquid effluent. This can be overcome by using Montmorillonite clay as support material as it is a great binder.


2021 ◽  
Vol 5 (1) ◽  
pp. 58
Author(s):  
Cátia Magro ◽  
Tiago Moura ◽  
Paulo A. Ribeiro ◽  
Maria Raposo ◽  
Susana Sério

Sensors are considered the future monitoring tools, since, compared to traditional sampling and analysis techniques, they provide fast response on the output data in a timely, continuous, safe, and cost-effective fashion. Antibiotics are important pharmaceuticals with a large variety of applications. However, the overconsumption of these drugs is under the spotlight, since traces of antibiotics are being found in aquatic ecosystems and may lead to the development of antibiotic resistance. Thus, in this work, sensors consisting of ceramic or glass BK7 solid supports with interdigitated gold electrodes coated with five bilayers of polyethyleneimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS) thin films were developed and able to distinguish clarithromycin concentrations between 10−15 M and 10−5 M in mineral and surface water matrices. In mineral water, the ceramic support sensors have shown high reproducibility, whereas glass support sensors are not reproducible for this matrix. For the surface water matrix, both types of sensors proved to be reproducible. The surface water’s principal component analysis, obtained for an electronic tongue composed of the aforementioned sensors, demonstrated the concept’s ability to discriminate between different concentrations of the target compound, although no significant pattern of trend was achieved.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Petru A. Cotfas ◽  
Daniel T. Cotfas

The solar energy is increasingly used as a renewable energy source. Raising the efficiency of energy conversion from solar to useful energy (electric and thermal) represents an important research direction in the renewable energy domain. Using hybrid systems for electric and thermal energy cogeneration can be a solution. In this study, a hybrid system (HS) is designed, manufactured, implemented, and experimentally tested under concentrated sunlight with a concentration ratio of 25 suns, obtained using a Fresnel lens as a sunlight concentrator. The HS comprises of four concentrated photovoltaic cells (CPVs), four thermoelectric generators (TEGs), and a solar thermal collector (STC). The HS is studied in three configurations of the exposed surface: only the CPV active area, the CPV active area with ceramic support, and the CPV active area with ceramic support covered with graphite sheet. Results reveal that the efficiency of each system component is affected by the exposed surface. If the efficiencies of the CPVs decrease from 32.3% to 30.8% from the first configuration to the last one, the efficiencies of TEGs and STC increase from 0.12% to 0.44 and from 26.3% to 52.0%, respectively. Increasing the concentration ratio from 25 to 33 suns, the power of the CPVs increases with almost 31%, but the efficiency decreases slightly, instead the efficiencies of the TEGs and STC increase.


LWT ◽  
2021 ◽  
Vol 140 ◽  
pp. 110640
Author(s):  
Yi-Huang Hsueh ◽  
Jun-Huang Yang ◽  
Shih-Fu Ou ◽  
Shyi-Tien Chen ◽  
Jen-Min Kuo ◽  
...  

2021 ◽  
Vol 316 ◽  
pp. 987-992
Author(s):  
Konstantin S. Makarevich ◽  
Oleg I. Kaminsky ◽  
Aleksey V. Zaitsev

A study was carried out to obtain effective photocatalytic coatings on a ceramic silicate carrier. The analysis of the characteristics of silicate materials, such as: ceramic carrier "Biopur"; porous glass carrier "Siporax"; glass-ceramic carrier (sitall) "Biopur forte" produced by the company "SERA", Germany, was made. According to X-ray phase analysis data, it was shown that the “Biopur” ceramic support is formed by magnesium aluminosilicates of the composition MgAl2Si3O10 and MgAl2Si4O12. The porous material “Siporax” is X-ray amorphous. The silicate material “Biopur forte” does not have a pronounced amorphous component in its structure and can be assigned to the class of sitall with a high SiO2 content and a low content of alkali and alkaline earth metal cations in the structure. A method for impregnating a ceramic support with a solution of a bismuth photo-catalyst precursor, a specially developed composition of a complex of bismuth with sorbitol, is considered. An effective concentration of a solution of a complex of bismuth with sorbitol in ethanol equal to 10% was found. By low-temperature pyrolysis at , photo-catalytically active coatings of strontium bismuthates were obtained on each of the considered types of ceramic supports. The highest photocatalytic activity was detected in the coating deposited on a ceramic carrier with a glass structure – “Biopur forte”. A study of the photocatalytic activity of coatings, based on strontium bismuthate, depending on the multiplicity of coating on a “Biopur forte” ceramic carrier, was made. The effective number of layers of the photocatalytic coating on a “Biopur forte” ceramic carrier is determined, which corresponds to the highest rate of decrease in the optical density of a model organic pollutant upon irradiation with visible light in the spectrum.


Sign in / Sign up

Export Citation Format

Share Document