scholarly journals Legionella Species Diversity in an Acidic Biofilm Community in Yellowstone National Park

2005 ◽  
Vol 71 (1) ◽  
pp. 507-511 ◽  
Author(s):  
Kathy B. Sheehan ◽  
Joan M. Henson ◽  
Michael J. Ferris

ABSTRACT Legionella species are frequently detected in aquatic environments, but their occurrence in extreme, acidic, geothermal habitats has not been explored with cultivation-independent methods. We investigated a predominately eukaryotic algal mat community in a pH 2.7 geothermal stream in Yellowstone National Park for the presence of Legionella and potential host amoebae. Our analyses, using PCR amplification with Legionella-specific primers targeting 16S rRNA genes, detected four known Legionella species, as well as Legionella sequences from species that are not represented in sequence databases, in mat samples and cultivated isolates. The nonrandom occurrence of sequences detected at lower (30�C) and higher (35 to 38�C) temperatures suggests that natural thermal gradients in the stream influence Legionella species distributions in this mat community. We detected only one sequence, Legionella micdadei, from cultivated isolates. We cultured and sequenced partial 18S rRNA gene regions from two potential hosts, Acanthamoeba and Euglena species.

2007 ◽  
Vol 73 (20) ◽  
pp. 6669-6677 ◽  
Author(s):  
Eric S. Boyd ◽  
Robert A. Jackson ◽  
Gem Encarnacion ◽  
James A. Zahn ◽  
Trevor Beard ◽  
...  

ABSTRACT Elemental sulfur (S0) is associated with many geochemically diverse hot springs, yet little is known about the phylogeny, physiology, and ecology of the organisms involved in its cycling. Here we report the isolation, characterization, and ecology of two novel, S0-reducing Crenarchaea from an acid geothermal spring referred to as Dragon Spring. Isolate 18U65 grows optimally at 70 to 72°C and at pH 2.5 to 3.0, while isolate 18D70 grows optimally at 81°C and pH 3.0. Both isolates are chemoorganotrophs, dependent on complex peptide-containing carbon sources, S0, and anaerobic conditions for respiration-dependent growth. Glycerol dialkyl glycerol tetraethers (GDGTs) containing four to six cyclopentyl rings were present in the lipid fraction of isolates 18U65 and 18D70. Physiological characterization suggests that the isolates are adapted to the physicochemical conditions of Dragon Spring and can utilize the natural organic matter in the spring as a carbon and energy source. Quantitative PCR analysis of 16S rRNA genes associated with the S0 flocs recovered from several acid geothermal springs using isolate-specific primers indicates that these two populations together represent 17 to 37% of the floc-associated DNA. The physiological characteristics of isolates 18U65 and 18D70 are consistent with their potential widespread distribution and putative role in the cycling of sulfur in acid geothermal springs throughout the Yellowstone National Park geothermal complex. Based on phenotypic and genetic characterization, the designations Caldisphaera draconis sp. nov. and Acidilobus sulfurireducens sp. nov. are proposed for isolates 18U65 and 18D70, respectively.


2002 ◽  
Vol 68 (10) ◽  
pp. 5123-5135 ◽  
Author(s):  
Carrine E. Blank ◽  
Sherry L. Cady ◽  
Norman R. Pace

ABSTRACT The extent of hyperthermophilic microbial diversity associated with siliceous sinter (geyserite) was characterized in seven near-boiling silica-depositing springs throughout Yellowstone National Park using environmental PCR amplification of small-subunit rRNA genes (SSU rDNA), large-subunit rDNA, and the internal transcribed spacer (ITS). We found that Thermocrinis ruber, a member of the order Aquificales, is ubiquitous, an indication that primary production in these springs is driven by hydrogen oxidation. Several other lineages with no known close relatives were identified that branch among the hyperthermophilic bacteria. Although they all branch deep in the bacterial tree, the precise phylogenetic placement of many of these lineages is unresolved at this time. While some springs contained a fair amount of phylogenetic diversity, others did not. Within the same spring, communities in the subaqueous environment were not appreciably different than those in the splash zone at the edge of the pool, although a greater number of phylotypes was found along the pool's edge. Also, microbial community composition appeared to have little correlation with the type of sinter morphology. The number of cell morphotypes identified by fluorescence in situ hybridization and scanning electron microscopy was greater than the number of phylotypes in SSU clone libraries. Despite little variation in Thermocrinis ruber SSU sequences, abundant variation was found in the hypervariable ITS region. The distribution of ITS sequence types appeared to be correlated with distinct morphotypes of Thermocrinis ruber in different pools. Therefore, species- or subspecies-level divergences are present but not detectable in highly conserved SSU sequences.


2002 ◽  
Vol 68 (10) ◽  
pp. 5064-5081 ◽  
Author(s):  
Alexander Loy ◽  
Angelika Lehner ◽  
Natuschka Lee ◽  
Justyna Adamczyk ◽  
Harald Meier ◽  
...  

ABSTRACT For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP-PhyloChip for diversity screening of SRPs in environmental and clinical samples was tested by using samples from periodontal tooth pockets and from the chemocline of a hypersaline cyanobacterial mat from Solar Lake (Sinai, Egypt). Consistent with previous studies, SRP-PhyloChip indicated the occurrence of Desulfomicrobium spp. in the tooth pockets and the presence of Desulfonema- and Desulfomonile-like SRPs (together with other SRPs) in the chemocline of the mat. The SRP-PhyloChip results were confirmed by several DNA microarray-independent techniques, including specific PCR amplification, cloning, and sequencing of SRP 16S rRNA genes and the genes encoding the dissimilatory (bi)sulfite reductase (dsrAB).


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 647
Author(s):  
Cassandra Koga ◽  
Greg W. Rouse

Stomatopoda, commonly known as mantis shrimps, are notable for their enlarged second maxillipeds encompassing the raptorial claw. The form of the claw can be used to divide them into two basic groups: smashers and spearers. Previous phylogenetic studies of Stomatopoda have focused on morphology or a few genes, though there have been whole mitochondrial genomes published for 15 members of Stomatopoda. However, the sampling has been somewhat limited with key taxa not included. Here, nine additional stomatopod mitochondrial genomes were generated and combined with the other available mitogenomes for a phylogenetic analysis. We used the 13 protein coding genes, as well as 12S rRNA, 16S rRNA genes, and included nuclear 18S rRNA gene sequences. Different rooting options were used for the analyses: (1) single and multiple outgroups from various eumalocostracan relatives and (2) a stomatopod-only dataset, with Hemisquilla californiensis used to root the topologies, based on the current hypothesis that Hemisquilla is the sister group to the rest of Stomatopoda. The eumalocostracan-rooted analyses all showed H. californiensis nested within Stomatopoda, raising doubts as to previous hypotheses as to its placement. Allowing for the rooting difference, the H. californiensis outgroup datasets had the same tree topology as the eumalocostracan outgroup datasets with slight variation at poorly supported nodes. Of the major taxonomic groupings sampled to date, Squilloidea was generally found to be monophyletic while Gonodactyloidea was not. The position of H. californiensis was found inside its superfamily, Gonodactyloidea, and grouped in a weakly supported clade containing Odontodactylus havanensis and Lysiosquillina maculata for the eumalocostracan-rooted datasets. An ancestral state reconstruction was performed on the raptorial claw form and provides support that spearing is the ancestral state for extant Stomatopoda, with smashing evolving subsequently one or more times.


2000 ◽  
Vol 66 (2) ◽  
pp. 844-849 ◽  
Author(s):  
G. Sabat ◽  
P. Rose ◽  
W. J. Hickey ◽  
J. M. Harkin

ABSTRACT A set of PCR primers targeting 16S rRNA gene sequences was designed, and PCR parameters were optimized to develop a robust and reliable protocol for selective amplification of Escherichia coli 16S rRNA genes. The method was capable of discriminatingE. coli from other enteric bacteria, including its closest relative, Shigella. Selective amplification of E. coli occurred only when the annealing temperature in the PCR was elevated to 72°C, which is 10°C higher than the optimum for the primers. Sensitivity was retained by modifying the length of steps in the PCR, by increasing the number of cycles, and most importantly by optimizing the MgCl2 concentration. The PCR protocol developed can be completed in less then 2 h and, by using Southern hybridization, has a detection limit of ca. 10 genomic equivalents per reaction. The method was demonstrated to be effective for detectingE. coli DNA in heterogeneous DNA samples, such as those extracted from soil.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Toshitsugu Fujita ◽  
Daisuke Motooka ◽  
Hodaka Fujii

Abstract Oligoribonucleotide (ORN) interference-PCR (ORNi-PCR) is a method that suppresses PCR amplification of target DNA in an ORN-specific manner. In this study, we examined whether ORNi-PCR can be used to enrich desirable DNA sequences from a DNA mixture by suppressing undesirable DNA amplification. ORNi-PCR enriched edited DNA sequences from a mixture of genomic DNA subjected to genome editing. ORNi-PCR enabled more efficient analysis of the types of insertion/deletion mutations introduced by genome editing. In addition, ORNi-PCR reduced the detection of 16S ribosomal RNA (16S rRNA) genes in 16S rRNA gene-based microbiome profiling, which might permit a more detailed assessment of populations of other 16S rRNA genes. Enrichment of desirable DNA sequences by ORNi-PCR may be useful in molecular biology, medical diagnosis, and other fields.


2004 ◽  
Vol 54 (6) ◽  
pp. 2361-2368 ◽  
Author(s):  
Christina Schäffer ◽  
William L. Franck ◽  
Andrea Scheberl ◽  
Paul Kosma ◽  
Timothy R. McDermott ◽  
...  

Two moderately thermophilic, Gram-positive, spore-forming bacteria were isolated from different geographical locations and sources; strain GS5-97T from a beet sugar factory in Leopoldsdorf, Lower Austria, and strain YNP10 from a geothermally heated soil, Yellowstone National Park, USA. The sequences of their 16S rRNA genes were found to be 99·8 % identical, and DNA–DNA hybridization experiments revealed that strains GS5-97T and YNP10 share 89·9 mol% similarity to each other, but only 34·3 and 39·2 mol% similarity, respectively, to Geobacillus caldoxylosilyticus DSM 12041T, which is their closest related type strain. A polyphasic analysis showed that these two isolates were more similar to each other than to other characterized geobacilli. Their DNA G+C content was 43·2 and 42·4 mol%, respectively, and they were identical with respect to many phenotypic features (e.g. Topt 55 °C; pHopt 7·0). Both strains clearly displayed best growth when cultured aerobically. They differed slightly in their cellular fatty acid profiles and polar lipid pattern, and genotypically they could also be distinguished based on randomly amplified polymorphic DNA fingerprints and internal transcribed spacer analysis. Freeze-etching experiments revealed oblique surface layer (S-layer) lattices in both strains, and biochemical analyses of the purified S-layer proteins indicated the occurrence of glycosylation. Based on the properties of these organisms relative to those currently documented for the genus Geobacillus and for the various sister genera in the Bacillus radiation, a novel species is proposed, Geobacillus tepidamans sp. nov., with GS5-97T (=ATCC BAA-942T=DSM 16325T) as the type strain. Strain YNP10 has been deposited in the American Type Culture Collection as ATCC BAA-943.


2005 ◽  
Vol 71 (3) ◽  
pp. 1405-1416 ◽  
Author(s):  
Xiaozhen Mou ◽  
Mary Ann Moran ◽  
Ramunas Stepanauskas ◽  
José M. González ◽  
Robert E. Hodson

ABSTRACT Marine bacterioplankton transform dimethylsulfoniopropionate (DMSP) into the biogeochemically important and climatically active gas dimethylsulfide. In order to identify specific bacterial taxa mediating DMSP processing in a natural marine ecosystem, we amended water samples from a southeastern U.S. salt marsh with 20 μM DMSP and tracked community shifts with flow cytometry (FCM) coupled to 16S rRNA gene analyses. In two out of four seasons studied, DMSP amendments induced the formation of distinct bacterioplankton populations with elevated nucleic acid (NA) content within 24 h, indicative of cells actively utilizing DMSP. The 16S rRNA genes of the cells with and without elevated NA content were analyzed following cell sorting and PCR amplification with sequencing and terminal restriction fragment length polymorphism approaches. Compared to cells in the control FCM populations, bacteria with elevated NA content in the presence of DMSP were relatively enriched in taxa related to Loktanella, Oceanicola, and Sulfitobacter (Roseobacter lineage, α-Proteobacteria); Caulobacter (α-Proteobacteria); and Brachymonas and Xenophilus (β-Proteobacteria) in the May-02 sample and to Ketogulonicigenium (Roseobacter lineage, α-Proteobacteria) and novel γ-Proteobacteria in the Sept-02 sample. Our study suggests that diverse bacterioplankton participate in the metabolism of DMSP in coastal marine systems and that their relative importance varies temporally.


2017 ◽  
Vol 26 (2) ◽  
pp. 167-174
Author(s):  
Hawa Jahan ◽  
Maria Akter ◽  
Rowshan Ara Begum ◽  
Reza Md Shahjahan

Identification of Labeo rohita, L. bata and L. gonius is sometimes problematic when usual morphological features are lost and it is difficult to differentiate them with traditional morphological features at their diverse developmental stages. PCR-sequencing provides an authentic alternative means of identification of individuals at species level. Three local carp fishes were collected and 16S rRNA genes were sequenced by sanger sequencing method after PCR amplification using universal primers. Obtained sequences were found accurate with blast search result which showed maximum range of similarity with the existing respective gene fragments present in GenBank database. Sequences were compared and multiple sequence alignment has revealed some polymorphic sites which can be used to differentiate these three species from one another. This study may provide valuable understanding to study their population in future. Dhaka Univ. J. Biol. Sci. 26(2): 167-174, 2017 (July)


2004 ◽  
Vol 70 (9) ◽  
pp. 5708-5713 ◽  
Author(s):  
Gordon Webster ◽  
R. John Parkes ◽  
John C. Fry ◽  
Andrew J. Weightman

ABSTRACT Phylogenetic analysis of 16S rRNA gene sequences from deep marine sediments identified a deeply branching clade, designated candidate division JS1. Primers for PCR amplification of partial 16S rRNA genes that target the JS1 division were developed and used to detect JS1 sequences in DNA extracted from various sedimentary environments, including, for the first time, coastal marine and brackish sediments.


Sign in / Sign up

Export Citation Format

Share Document