scholarly journals Immunization of Saimiri sciureus Monkeys with a Recombinant Hybrid Protein Derived from the Plasmodium falciparum Antigen Glutamate-Rich Protein and Merozoite Surface Protein 3 Can Induce Partial Protection with Freund and Montanide ISA720 Adjuvants

2005 ◽  
Vol 12 (2) ◽  
pp. 242-248 ◽  
Author(s):  
Leonardo J. M. Carvalho ◽  
Francisco A. Alves ◽  
Cesare Bianco ◽  
Salma G. Oliveira ◽  
Graziela M. Zanini ◽  
...  

ABSTRACT The immunogenicity and efficacy of a hybrid recombinant protein derived from the N-terminal end of the glutamate-rich protein (GLURP) and the C-terminal portion of the merozoite surface protein 3 (MSP3) of Plasmodium falciparum was evaluated in Saimiri sciureus monkeys. The GLURP/MSP3 hybrid protein, expressed in Lactococcus lactis, was administered in association with alum, Montanide ISA720, or complete or incomplete Freund adjuvant (CFA/IFA) in groups of five animals each. The three formulations were shown to be immunogenic, but the one with alum was shown to be weak compared to the other two, particularly CFA/IFA, which provided very high antibody titers (enzyme-linked immunosorbent assay titers of >3,000,000 and immunofluorescence antibody test titers of 6,400). After a challenge infection with P. falciparum FUP strain, all five monkeys from the GLURP/MSP3-alum group showed a rapid increase in parasitemia, reaching 10% and were treated early. The two monkeys with the highest antibody titers in group GLURP/MSP3-Montanide ISA720 had a delay in the course of parasitemia and were treated late due to a low hematocrit. In the GLURP/MSP3-CFA/IFA group, parasitemia remained below this threshold in four of the five animals and, after it reached a peak, parasitemia started to decrease and monkeys were treated late. When all animals were grouped according to the outcome, a statistically significant association between high antibody titers and partial protection was observed. The challenge infection boosted the antibody titers, and the importance of this event for vaccine efficacy in areas where this parasite is endemic is discussed. In conclusion, these data suggest that GLURP and MSP3 can induce protection against malaria infection if antibodies are induced at properly high titers.

2002 ◽  
Vol 70 (2) ◽  
pp. 820-825 ◽  
Author(s):  
Niklas Ahlborg ◽  
Irene T. Ling ◽  
Wendy Howard ◽  
Anthony A. Holder ◽  
Eleanor M. Riley

ABSTRACT Vaccination of mice with the 42-kDa region of Plasmodium yoelii merozoite surface protein 1 (MSP142) or its 19-kDa C-terminal processing product (MSP119) can elicit protective antibody responses in mice. To investigate if the 33-kDa N-terminal fragment (MSP133) of MSP142 also induces protection, the gene segment encoding MSP133 was expressed as a glutathione S-transferase (GST) fusion protein. C57BL/6 and BALB/c mice were immunized with GST-MSP133 and subsequently challenged with the lethal P. yoelii YM blood stage parasite. GST-MSP133 failed to induce protection, and all mice developed patent parasitemia at a level similar to that in naive or control (GST-immunized) mice; mice immunized with GST-MSP119 were protected, as has been shown previously. Specific prechallenge immunoglobulin G (IgG) antibody responses to MSP1 were analyzed by enzyme-linked immunosorbent assay and immunofluorescence. Despite being unprotected, several mice immunized with MSP133 had antibody titers (of all IgG subclasses) that were comparable to or higher than those in mice that were protected following immunization with MSP119. The finding that P. yoelii MSP133 elicits strong but nonprotective antibody responses may have implications for the design of vaccines for humans based on Plasmodium falciparum or Plasmodium vivax MSP142.


2004 ◽  
Vol 72 (3) ◽  
pp. 1557-1567 ◽  
Author(s):  
Brenda A. Okech ◽  
Patrick H. Corran ◽  
James Todd ◽  
Amy Joynson-Hicks ◽  
Chairat Uthaipibull ◽  
...  

ABSTRACT Antibodies to the C terminus of the Plasmodium falciparum merozoite surface protein, PfMSP-119, may inhibit merozoite invasion or block the effects of inhibitory antibodies. Here, using a competition enzyme-linked immunosorbent assay and antibody binding to wild-type and mutated recombinant proteins, we show that there are marked variations between individuals in the fine specificity of naturally acquired anti-MSP-119 antibodies. Furthermore, although neither the prevalence nor the concentration of total anti-MSP-119 antibodies was associated with resistance to malaria in African children, significant associations were observed between antibody fine specificity and subsequent risk of infection and high-density parasitemia during a follow-up period. Thus, the fine specificity of naturally acquired human anti-MSP-119 antibodies is crucial in determining their function. Future field studies, including the evaluation of PfMSP-1 vaccine trials, should include assays that explore antibody fine specificity as well as titer.


2006 ◽  
Vol 74 (5) ◽  
pp. 2867-2875 ◽  
Author(s):  
John P. A. Lusingu ◽  
Anja T. R. Jensen ◽  
Lasse S. Vestergaard ◽  
Daniel T. Minja ◽  
Michael B. Dalgaard ◽  
...  

ABSTRACT Antibodies to variant surface antigen have been implicated as mediators of malaria immunity in studies measuring immunoglobulin G (IgG) binding to infected erythrocytes. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an important target for these antibodies, but no study has directly linked the presence of PfEMP1 antibodies in children to protection. We measured plasma IgG levels to the cysteine-rich interdomain region 1α (CIDR1α) of VAR4 (VAR4-CIDR1α), a member of a semiconserved PfEMP1 subfamily, by enzyme-linked immunosorbent assay in 561 Tanzanian individuals, who were monitored clinically for 7 months. The participants resided in Mkokola (a high-transmission village where malaria is holoendemic) or Kwamasimba (a moderate-transmission village). For comparison, plasma IgG levels to two merozoite surface protein 1 (MSP1) constructs, MSP1-19 and MSP1 block 2, and a control CIDR1 domain were measured. VAR4-CIDR1α antibodies were acquired at an earlier age in Mkokola than in Kwamasimba, but after the age of 10 years the levels were comparable in the two villages. After controlling for age and other covariates, the risk of having anemia at enrollment was reduced in VAR4-CIDR1α responders for Mkokola (adjusted odds ratio [AOR], 0.49; 95% confidence interval [CI], 0.29 to 0.88; P = 0.016) and Kwamasimba (AOR, 0.33; 95% CI, 0.16 to 0.68; P = 0.003) villages. The risk of developing malaria fever was reduced among individuals with a measurable VAR4-CIDR1α response from Mkokola village (AOR, 0.51; 95% CI, 0.29 to 0.89; P = 0.018) but not in Kwamasimba. Antibody levels to the MSP1 constructs and the control CIDR1α domain were not associated with morbidity protection. These data strengthen the concept of developing vaccines based on PfEMP1.


2006 ◽  
Vol 13 (12) ◽  
pp. 1307-1313 ◽  
Author(s):  
Genevieve G. Fouda ◽  
Rose F. G. Leke ◽  
Carole Long ◽  
Pierre Druilhe ◽  
Ainong Zhou ◽  
...  

ABSTRACTAntibodies toPlasmodium falciparumare classically measured using the enzyme-linked immunosorbent assay (ELISA). Although highly sensitive, this technique is labor-intensive when large numbers of samples must be screened against multiple antigens. The suspension array technology (SAT) might be an alterative to ELISA, as it allows measurement of antibodies against multiple antigens simultaneously with a small volume of sample. This study sought to adapt the new SAT multiplex system for measuring antibodies against nine malarial vaccine candidate antigens, including recombinant proteins from two variants of merozoite surface protein 1, two variants of apical merozoite antigen 1, erythrocyte binding antigen 175, merozoite surface protein 3, and peptides from the circumsporozoite protein, ring erythrocyte surface antigen, and liver-stage antigen 1. Various concentrations of the antigens were coupled to microspheres with different spectral addresses, and plasma samples from Cameroonian adults were screened by SAT in mono- and multiplex formats and by ELISA. Optimal amounts of protein required to perform the SAT assay were 10- to 100-fold less than that needed for ELISA. Excellent agreement was found between the single and multiplex formats (R≥ 0.96), even when two variants of the same antigen were used. The multiplex assay was rapid, reproducible, required less than 1 μl of plasma, and had a good correlation with ELISA. Thus, SAT provides an important new tool for studying the immune response to malaria rapidly and efficiently in large populations, even when the amount of plasma available is limited, e.g., in studies of neonates or finger-prick blood.


2000 ◽  
Vol 68 (3) ◽  
pp. 1418-1427 ◽  
Author(s):  
Andrea F. Egan ◽  
Michael J. Blackman ◽  
David C. Kaslow

ABSTRACT Protection against a lethal challenge infection of Plasmodium falciparum was elicited in malaria-naive Aotus vociferans monkeys by vaccination with the C terminus 19-kDa protein of the major merozoite surface protein (MSP-119) fused to tetanus toxoid universal T-cell epitopes P30 and P2. Three of four monkeys were protected against a 104-parasite challenge. Four monkeys were challenged with 105 parasites; one self-cured the infection, two were protected against high parasitemia (<2%) but were treated for severe anemia (hematocrit of <25%), and the fourth was not protected. In this model system, anemia appears to be a manifestation of incomplete protection (prolonged low-level parasitemia). Enzyme-linked immunosorbent assay (ELISA) antibody titers correlated with protection. Antibodies from some protected monkeys inhibited secondary processing of MSP-142to MSP-133 and MSP-119. To mimic the repeated reinfections seen in regions where malaria is endemic, a second malaria parasite challenge was administered 4 months later. All P30P2MSP-119-vaccinated monkeys were protected; thus, a single challenge infection may underestimate vaccine efficacy. ELISA antibody titers correlated with protection against a second infection but had decreased compared to the first challenge. As most target populations for asexual blood-stage malaria vaccines will have been exposed to malaria parasites, a malaria parasite-exposed monkey was vaccinated with P30P2MSP-119. This monkey was completely protected, while a malaria parasite-naive P30P2MSP-119-vaccinated monkey self-cured a low-grade parasitemia. Prior malaria parasite infection primed the production of anti-native MSP-119 antibodies, which were boosted by vaccination with recombinant P30P2MSP-119. Preliminary data suggest that immunogenicity studies of vaccines designed for malaria parasite-exposed populations should also be conducted in malaria parasite-exposed subjects.


2005 ◽  
Vol 73 (1) ◽  
pp. 287-297 ◽  
Author(s):  
Christian A. Darko ◽  
Evelina Angov ◽  
William E. Collins ◽  
Elke S. Bergmann-Leitner ◽  
Autumn S. Girouard ◽  
...  

ABSTRACT A 42-kDa fragment from the C terminus of major merozoite surface protein 1 (MSP1) is among the leading malaria vaccine candidates that target infection by asexual erythrocytic-stage malaria parasites. The MSP142 gene fragment from the Vietnam-Oak Knoll (FVO) strain of Plasmodium falciparum was expressed as a soluble protein in Escherichia coli and purified according to good manufacturing practices. This clinical-grade recombinant protein retained some important elements of correct structure, as it was reactive with several functional, conformation-dependent monoclonal antibodies raised against P. falciparum malaria parasites, it induced antibodies (Abs) that were reactive to parasites in immunofluorescent Ab tests, and it induced strong growth and invasion inhibitory antisera in New Zealand White rabbits. The antigen quality was further evaluated by vaccinating Aotus nancymai monkeys and challenging them with homologous P. falciparum FVO erythrocytic-stage malaria parasites. The trial included two control groups, one vaccinated with the sexual-stage-specific antigen of Plasmodium vivax, Pvs25, as a negative control, and the other vaccinated with baculovirus-expressed MSP142 (FVO) as a positive control. Enzyme-linked immunosorbent assay (ELISA) Ab titers induced by E. coli MSP142 were significantly higher than those induced by the baculovirus-expressed antigen. None of the six monkeys that were vaccinated with the E. coli MSP142 antigen required treatment for uncontrolled parasitemia, but two required treatment for anemia. Protective immunity in these monkeys correlated with the ELISA Ab titer against the p19 fragment and the epidermal growth factor (EGF)-like domain 2 fragment of MSP142, but not the MSP142 protein itself or the EGF-like domain 1 fragment. Soluble MSP142 (FVO) expressed in E. coli offers excellent promise as a component of a vaccine against erythrocytic-stage falciparum malaria.


2006 ◽  
Vol 74 (5) ◽  
pp. 2887-2893 ◽  
Author(s):  
Margaret Pinder ◽  
Colin J. Sutherland ◽  
Fatoumatta Sisay-Joof ◽  
Jamila Ismaili ◽  
Matthew B. B. McCall ◽  
...  

ABSTRACT We examined the hypothesis that recovery from uncomplicated malaria in patients carrying drug-resistant Plasmodium falciparum is a measure of acquired functional immunity and may therefore be associated with humoral responses to candidate vaccine antigens. Gambian children with malaria were treated with chloroquine in 28-day trials, and recovery was defined primarily as the absence of severe clinical malaria at any time and absence of parasitemia with fever after 3 days. Plasma samples from these children were assayed by enzyme-linked immunosorbent assay for immunoglobulin G (IgG) to recombinant merozoite antigens: apical membrane antigen 1 (AMA-1) and the 19-kDa C-terminal region of merozoite surface protein 1 (MSP-119), including antigenic variants of MSP-119 with double and triple substitutions. Antigen-specific IgG was more frequent in children who recovered, particularly that for MSP-119 (age-adjusted odds ratios: 0.32 [95% confidence interval, 0.05, 1.87; P = 0.168] for AMA-1, 0.19 [0.03, 1.11; P = 0.019] for recombinant MSP-119, 0.24 [0.04, 1.31; P = 0.032] for the recombinant MSP-119 double variant, and 0.18 [0.03, 0.97; P = 0.013] for the triple variant). IgG titers to MSP-119 and to the triple variant were higher in plasma samples taken 7 days after chloroquine treatment from children who carried resistant parasites but recovered and remained parasite free. Moreover, in children who were parasitemic on day 14 or day 28, there was an age-independent relationship between parasite density and IgG to both MSP-119 and the triple variant (coefficients of −0.550 and −0.590 and P values of 0.002 and 0.001, respectively). The results validate the use of this approach to identify antigens that are associated with protection from malaria.


2001 ◽  
Vol 69 (7) ◽  
pp. 4390-4397 ◽  
Author(s):  
Lina Wang ◽  
Thomas L. Richie ◽  
Anthony Stowers ◽  
Doan Hanh Nhan ◽  
Ross L. Coppel

ABSTRACT Merozoite surface protein 4 (MSP4) of Plasmodium falciparum is a glycosylphosphatidylinositol-anchored integral membrane protein that is being developed as a component of a subunit vaccine against malaria. We report here the measurement of naturally acquired antibodies to MSP4 in a population of individuals living in the Khanh-Hoa region of Vietnam, an area where malaria is highly endemic. Antibodies to MSP4 were detected in 94% of the study population at titers of 1:5,000 or greater. Two forms of recombinant MSP4 produced in either Escherichia coli orSaccharomyces cerevisiae were compared as substrates in the enzyme-linked immunosorbent assay. There was an excellent correlation between reactivity measured to either, although the yeast substrate was recognized by a higher percentage of sera. Four different regions of MSP4 were recognized by human antibodies, demonstrating that there are at least four distinct epitopes in this protein. In the carboxyl terminus, where the single epidermal growth factor-like domain is located, the reactive epitope(s) was shown to be conformation dependent, as disruption of the disulfide bonds almost completely abolished reactivity with human antibodies. The anti-MSP4 antibodies were mainly of the immunoglobulin G1 (IgG1) and IgG3 subclasses, suggesting that such antibodies may play a role in opsonization and complement-mediated lysis of free merozoites. Individuals in the study population were drug-cured and followed up for 6 months; no significant correlation was observed between the anti-MSP4 antibodies and the absence of parasitemia during the surveillance period. As a comparison, antibodies to MSP119, a leading vaccine candidate, were measured, and no correlation with protection was observed in these individuals. The anti-MSP119 antibodies were predominantly of the IgG1 isotype, in contrast to the IgG3 predominance noted for MSP4.


Sign in / Sign up

Export Citation Format

Share Document