erythrocytic stage
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 19)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Rebecca C. S. Edgar ◽  
Natalie A. Counihan ◽  
Sheena McGowan ◽  
Tania F. de Koning-Ward

Plasmodium falciparum malaria remains a global health problem as parasites continue to develop resistance to all antimalarials in use. Infection causes clinical symptoms during the intra-erythrocytic stage of the lifecycle where the parasite infects and replicates within red blood cells (RBC). During this stage, P. falciparum digests the main constituent of the RBC, hemoglobin, in a specialized acidic compartment termed the digestive vacuole (DV), a process essential for survival. Many therapeutics in use target one or multiple aspects of the DV, with chloroquine and its derivatives, as well as artemisinin, having mechanisms of action within this organelle. In order to better understand how current therapeutics and those under development target DV processes, techniques used to investigate the DV are paramount. This review outlines the involvement of the DV in therapeutics currently in use and focuses on the range of techniques that are currently utilized to study this organelle including microscopy, biochemical analysis, genetic approaches and metabolomic studies. Importantly, continued development and application of these techniques will aid in our understanding of the DV and in the development of new therapeutics or therapeutic partners for the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yifan Wu ◽  
Shiguang Huang ◽  
Siyu Xiao ◽  
Jian He ◽  
Fangli Lu

Hepatopathy is frequently observed in patients with severe malaria but its pathogenesis remains unclear. Galectins are evolutionarily conserved glycan-binding proteins with pleiotropic roles in innate and adaptive immune responses, and exhibit pivotal roles during Plasmodium spp. infection. Here, we analyzed the impact of blockage of galectin-receptor interactions by treatment with alpha (α)-lactose on liver immunopathology during the erythrocytic stage of malaria in mice infected with Plasmodium berghei ANKA (PbANKA). Our results found that compared with PbANKA-infected mice (malarial mice), blockage of galectin-receptor interactions led to decreased host survival rate and increased peripheral blood parasitemia; exacerbated liver pathology, increased numbers of CD68+ macrophages and apoptotic cells, and increased parasite burden in the livers on days 5 and 7 post infection (p.i.) as well as increased mRNA expression levels of galectin-9 (Gal-9) and its receptor, the T cell immunoglobulin domain and mucin domain protein 3 (Tim-3), interferon (IFN)α, IFNγ, and the triggering receptor expressed on myeloid cells (TREM)-1 in the livers or spleens of PbANKA-infected mice on day 7 p.i. Observed by transmission electron microscopy, the peritoneal macrophages isolated from malarial mice with α-lactose treatment had more pseudopodia than those from malarial mice. Measured by using quantitative real-time reverse transcription-polymerase chain reaction assay, the mRNA expression levels of Gal-9, IFNα, IFNβ, IFNγ, and TREM-1 were increased in the peritoneal macrophages isolated from malarial mice with α-lactose treatment in comparison of those from malarial mice. Furthermore, significant positive correlations existed between the mRNA levels of Gal-9 and Tim-3/IFNγ/TREM-1 in both the livers and the peritoneal macrophages, and between Gal-9 and Tim-3/TREM-1 in the spleens of malarial mice; significant positive correlations existed between the mRNA levels of Gal-9 and IFNγ in the livers and between Gal-9 and IFNα in the peritoneal macrophages from malarial mice treated with α-lactose. Our data suggest a potential role of galectin-receptor interactions in limiting liver inflammatory response and parasite proliferation by down-regulating the expressions of IFNα, IFNγ, and TREM-1 during PbANKA infection.


2021 ◽  
Author(s):  
Rammohan R Yadav ◽  
Mariana Laureano de Souza ◽  
Mariana Lozano Gonzalez ◽  
Shams Ul Mahmood ◽  
Tyler Eck ◽  
...  

The discovery of new targets for treatment of malaria and in particular those aimed at the pre-erythrocytic stage in the life cycle, advanced with the demonstration that orally administered inhibitors of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) could clear infection in a murine model. This enthusiasm was tempered by unsatisfactory safety and/or pharmacokinetic issues found with these chemotypes. To address the urgent need for new scaffolds, this manuscript presents initial structure-activity relationships in an imidazole scaffold at four positions, representative in vitro ADME, hERG characterization and cell-based anti-parasitic activity. This series of PfPKG inhibitors has good in vitro PfPKG poten-cy, low hERG activity and cell-based anti-parasitic activity against multiple Plasmodium species that appears to correlate with in vitro potency.


2021 ◽  
pp. 105244
Author(s):  
Brodie L. Bailey ◽  
William Nguyen ◽  
Anna Ngo ◽  
Christopher D. Goodman ◽  
Maria R. Gancheva ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Alvaro Baeza Garcia ◽  
Edwin Siu ◽  
Xin Du ◽  
Lin Leng ◽  
Blandine Franke-Fayard ◽  
...  

AbstractMalaria begins when mosquito-borne Plasmodium sporozoites invade hepatocytes and usurp host pathways to support the differentiation and multiplication of erythrocyte-infective merozoite progeny. The deadliest complication of infection, cerebral malaria, accounts for the majority of malarial fatalities. Although our understanding of the cellular and molecular mechanisms underlying the pathology remains incomplete, recent studies support the contribution of systemic and neuroinflammation as the cause of cerebral edema and blood-brain barrier (BBB) dysfunction. All Plasmodium species encode an orthologue of the innate cytokine, Macrophage Migration Inhibitory Factor (MIF), which functions in mammalian biology to regulate innate responses. Plasmodium MIF (PMIF) similarly signals through the host MIF receptor CD74, leading to an enhanced inflammatory response. We investigated the PMIF-CD74 interaction in the onset of experimental cerebral malaria (ECM) using CD74 deficient (Cd74−/−) mice, which were found to be protected from ECM. The protection was associated with the inability of brain microvessels from Cd74−/− hosts to present parasite antigen to sequestered Plasmodium-specific CD8+ T cells. Infection of mice with PMIF-deficient sporozoites (PbAmif-) also protected mice from ECM, highlighting the pivotal role of PMIF in the pre-erythrocytic stage of the infection. A novel pharmacologic PMIF-selective antagonist reduced PMIF/CD74 signaling and fully protected mice from ECM. These findings reveal a conserved mechanism for Plasmodium usurpation of host CD74 signaling and suggest a tractable approach for new pharmacologic intervention.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lamine Mahaman Moustapha ◽  
Rafiou Adamou ◽  
Maman Laminou Ibrahim ◽  
Mariama Abdoulaye Louis Padounou ◽  
Abdoulaye Diallo ◽  
...  

Abstract Background In endemic areas, children develop slowly and naturally anti-Plasmodium antibodies and become semi-immune. Seasonal Malaria Chemoprevention (SMC) with sulfadoxine-pyrimethamine + amodiaquine (SPAQ) is a new strategy to reduce malaria morbidity in West African young children. However, SMC may impact on the natural acquisition of anti-Plasmodium immunity. This paper evaluates the effect of SMC with SPAQ on antibody concentration in young children from Niger. Methods This research was conducted in areas benefitting from SMC since 2014 (Zinder district), without SMC (Dosso district), and with 1 year of SMC since 2016 (Gaya district). To assess the relationship between SMC and Plasmodium falciparum IgG antibody responses, the total antibody concentrations against two P. falciparum asexual stage vaccine candidate antigens, circumsporozoite protein (CSP) and glutamate-rich protein R2 (GLURP-R2), in children aged 3 to 59 months across the three areas were compared. Antibody concentrations are quantified using an enzyme-linked immunosorbent assay on the elution extracted from positive and negative malaria Rapid Diagnostic Test cassettes. Results The analysis concerns two hundred and twenty-nine children aged from 3 to 59 months: 71 in Zinder, 77 in Dosso, and 81 in Gaya. In Zinder (CSP = 17.5 µg/ml and GLURP-R2 = 14.3 µg/ml) median antibody concentration observed are higher than in Gaya (CSP = 7.7 µg/ml and GLURP-R2 = 6.5 µg/ml) and Dosso (CSP = 4.5 µg/ml and GLURP-R2 = 3.6 µg/ml) (p < 0.0001). Conclusion The research reveals some evidences which show that seasonal malaria chemoprevention with SPAQ has an effect on blood stage antibody responses and pre-erythrocytic stage of P. falciparum infections in Niger. Increased antibody titres with increased SMC/SPAQ implementation. This contradicts hypothesis that SMC/SPAQ could reduce immunity to erythrocyte and liver-stage antigens. Further studies are necessary to provide better understanding of the SMC effect on malaria immunity.


Vaccine ◽  
2020 ◽  
Vol 38 (48) ◽  
pp. 7569-7577
Author(s):  
Annie X.Y. Mo ◽  
John Pesce ◽  
Alison Deckhut Augustine ◽  
Jean-Luc Bodmer ◽  
Joseph Breen ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4376
Author(s):  
Marina Marinović ◽  
Ivana Perković ◽  
Diana Fontinha ◽  
Miguel Prudêncio ◽  
Jana Held ◽  
...  

Harmicines represent hybrid compounds composed of β-carboline alkaloid harmine and cinnamic acid derivatives (CADs). In this paper we report the synthesis of amide-type harmicines and the evaluation of their biological activity. N-harmicines 5a–f and O-harmicines 6a–h were prepared by a straightforward synthetic procedure, from harmine-based amines and CADs using standard coupling conditions, 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo [4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU) and N,N-diisopropylethylamine (DIEA). Amide-type harmicines exerted remarkable activity against the erythrocytic stage of P. falciparum, in low submicromolar concentrations, which was significantly more pronounced compared to their antiplasmodial activity against the hepatic stages of P. berghei. Furthermore, a cytotoxicity assay against the human liver hepatocellular carcinoma cell line (HepG2) revealed favorable selectivity indices of the most active harmicines. Molecular dynamics simulations demonstrated the binding of ligands within the ATP binding site of PfHsp90, while the calculated binding free energies confirmed higher activity of N-harmicines 5 over their O-substituted analogues 6. Amino acids predominantly affecting the binding were identified, which provided guidelines for the further derivatization of the harmine framework towards more efficient agents.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 400
Author(s):  
Camila Marques-da-Silva ◽  
Kristen Peissig ◽  
Samarchith P. Kurup

Malaria, caused by the protozoan Plasmodium, is a devastating disease with over 200 million new cases reported globally every year. Although immunization is arguably the best strategy to eliminate malaria, despite decades of research in this area we do not have an effective, clinically approved antimalarial vaccine. The current impetus in the field is to develop vaccines directed at the pre-erythrocytic developmental stages of Plasmodium, utilizing novel vaccination platforms. We here review the most promising pre-erythrocytic stage antimalarial vaccine candidates.


Sign in / Sign up

Export Citation Format

Share Document