scholarly journals International Laboratory Comparison of Influenza Microneutralization Assays for A(H1N1)pdm09, A(H3N2), and A(H5N1) Influenza Viruses by CONSISE

2015 ◽  
Vol 22 (8) ◽  
pp. 957-964 ◽  
Author(s):  
Karen L. Laurie ◽  
Othmar G. Engelhardt ◽  
John Wood ◽  
Alan Heath ◽  
Jacqueline M. Katz ◽  
...  

ABSTRACTThe microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HA MN assay protocols to enable better correlation of these assays in the future.

2019 ◽  
Vol 147 ◽  
Author(s):  
Jiajun Yang ◽  
Hao Li ◽  
Liyuan Jia ◽  
Xianchun Lan ◽  
Yuhui Zhao ◽  
...  

Abstract In the human population, influenza A viruses are associated with acute respiratory illness and are responsible for millions of deaths annually. Avian and human influenza viruses typically have a different α2-3- and α2-6-linked sialic acid (SA) binding preference. Only a few amino acid changes in the haemagglutinin on the surface of avian influenza viruses (AIV) can cause a switch from avian to human receptor specificity, and the individuals with pathognostic chronic diseases might be more susceptible to AIV due to the decreased expression level of terminal α2-3-linked SA in their saliva. Here, using lectin and virus histochemical staining, we observed the higher expression levels of α2-3/6-linked SA influenza virus receptors in the airway of HBV-transgenic mice compared with that of control mice due to the significant decrease in control mice during ageing, which imply that this is also a risk factor for individuals with pathognostic chronic diseases susceptible to influenza viruses. Our findings will help understand the impact on influenza virus pathogenesis and transmission.


2017 ◽  
Vol 56 (4) ◽  
pp. 339
Author(s):  
C. S. KYRIAKIS (Κ. ΣΠ. ΚΥΡΙΑΚΗΣ) ◽  
K. Van REETH

The huge epizootics of highly pathogenic avian influenza (subtype H5N1) in Southeastern Asia over the last two years and especially the transmission of avian influenza viruses to humans have alerted the international scientific community. Many support that the threat of a new influenza pandemic appears greater today than ever before. During the 20th century, humanity has faced three pandemics, including the "Spanish flu" of 1918-19, which claimed over 20 to 40 million lives, and two less dramatic pandemics in 1957-58 and 1968-69. Influenza A viruses are single stranded RNA viruses belonging to the family Orthomyxoviridae. Their genome expresses only 10 proteins, most important of which are the two surface glycoproteins: haemagglutinin (HA) and neuraminidase (NA). So far, 16 different types of haemagglutinin (HI to Η16) and 9 of neuraminidase (Nl to N9) have been recognized. Influenza A viruses are grouped into "subtypes", according to the HA and NA surface proteins they bear (for example Η I N I , H5N2). Natural reservoirs of influenza A viruses are the wild aquatic birds (migratory waterfowl), from which all types of HA and NA have been isolated. It is important to mention that migratory waterfowl do not show clinical signs of disease, but shed the virus through their excretions.The host range of flu viruses includes domestic poultry, and mammalian species from aquatic mammals to horses, humans and swine. Because of their segmented single stranded RNA genome, influenza viruses have a very high mutation rate (genetic drift) and the possibility to undergo reassortment. Reassortment may occur when more than one virus co-infect the same cell, exchange genes and as a result, provide a totally new influenza virus (genetic shift). At least two subtypes of influenza A viruses are currendy endemic within the human population (H1N1 and H3N2), causing every year outbreaks of disease with very low mortality, especially in elders. Unlike these endemic viruses, pandemic viruses have a much higher morbidity, affecting people of all ages. Η I N I , H3N2 and H1N2 influenza viruses are currently circulating in the European and American swine population. Some of the swine influenza virus subtypes, namely Η I N I and H3N2, are thus similar to those of humans, but there are still important antigenic differences between them. Only rarely swine influenza viruses may be transmitted or cause disease to humans. Unlike mammalian influenza viruses, influenza viruses of domestic birds are grouped in two "pathotypes": low pathogenic avian influenza (LPAI) viruses, which cause localized infections and remain mild or subclinical, and highly pathogenic avian influenza (HPAI) viruses, which cause severe general infection with mortality up to 100% (fowl plague). The majority of avian influenza viruses are low pathogenic and only some, but not all, viruses of H5 and H7 subtypes are highly pathogenic. Occasionally low pathogenic Η5 or H7 viruses from wild birds transmit to poultry. Such viruses can undergo mutations in poultry as a result of which they may acquire a highly pathogenic phenotype. Until the recent avian influenza epizootics in Asia, the predominant theory for the creation of a pandemic virus supported that the pig was likely to act as an intermediate host for transmission of influenza viruses from birds to humans. The fact that genetic reassortment between human and avian viruses has also been shown to occur in pigs in nature, had led to the hypothesis that the pandemic viruses of 1957 and 1968 may have been generated through the pig. More recent data, however, come to question these theories and hypotheses: (a)the direct transmission of the H5N1 and H7N7 avian influenza viruses from birds to humans in Southeastern Asia and The Netherlands, and (b) the presence of cellular receptors recognized preferentially by the haemagglutinin of avian influenza viruses in the human conjunctiva and ciliated respiratory epithelial cells, which support that avian influenza viruses can be transmitted in toto (without reassortment) to and between humans or that humans can be the mixing vessel themselves. Furthermore, there is no solid scientific evidence to prove that any influenza virus reassortants, that have originated in swine, have posed a risk for humans. There are three criteria (conditions) an influenza virus must fulfill in order to be characterized as a pandemic virus: (a) it must be a new virus against which humans are immunologically naive, (b) it must be able to replicate in humans causing severe disease, and (c) it must be efficiendy transmitted among humans, causing wide outbreaks. So far the H5N1 influenza virus only fulfills the first and second condition, and even though it has been sporadically infecting humans for over two years, it has not yet been able to fully adapt to it's new host. Compared to the human population that may have been exposed to the H5N1 influenza virus in Asia, the number of patients and fatalities due to the H5N1 virus is very small. So far, it appears that swine do not play an important role in the epidemiology of this specific virus. Experimental infections of swine with highly pathogenic H5N1 virus have shown that it does not replicate extensively in pigs. Additionally, extensive serological investigations in the swine population of Viet Nam, indicated that the H5N1 virus merely spread to a very small number (~0.25%) of contact animals within the epizootic regions. Nevertheless, it is critical to continue monitor ring pigs and studying the behavior and spread of influenza viruses in these species.


2008 ◽  
Vol 82 (11) ◽  
pp. 5161-5166 ◽  
Author(s):  
J. H. C. M. Kreijtz ◽  
G. de Mutsert ◽  
C. A. van Baalen ◽  
R. A. M. Fouchier ◽  
A. D. M. E. Osterhaus ◽  
...  

ABSTRACT Since the number of human cases of infection with avian H5N1 influenza viruses is ever increasing, a pandemic outbreak caused by these viruses is feared. Therefore, in addition to virus-specific antibodies, there is considerable interest in immune correlates of protection against these viruses, which could be a target for the development of more universal vaccines. After infection with seasonal influenza A viruses of the H3N2 and H1N1 subtypes, individuals develop virus-specific cytotoxic T-lymphocyte responses, which are mainly directed against the relatively conserved internal proteins of the virus, like the nucleoprotein (NP). Virus-specific cytotoxic T lymphocytes (CTL) are known to contribute to protective immunity against infection, but knowledge about the extent of cross-reactivity with avian H5N1 influenza viruses is sparse. In the present study, we evaluated the cross-reactivity with H5N1 influenza viruses of polyclonal CTL obtained from a group of well-defined HLA-typed study subjects. To this end, the recognition of synthetic peptides representing H5N1 analogues of known CTL epitopes was studied. In addition, the ability of CTL specific for seasonal H3N2 influenza virus to recognize the NP of H5N1 influenza virus or H5N1 virus-infected cells was tested. It was concluded that, apart from some individual epitopes that displayed amino acid variation between H3N2 and H5N1 influenza viruses, considerable cross-reactivity exists with H5N1 viruses. This preexisting cross-reactive T-cell immunity in the human population may dampen the impact of a next pandemic.


2018 ◽  
Vol 3 (2) ◽  
pp. 1-2
Author(s):  
Bishnu Prasad Upadhyay

Influenza virus type A and B are responsible for seasonal epidemics as well as pandemics in human. Influenza A viruses are further divided into two major groups namely, low pathogenic seasonal influenza (A/H1N1, A/H1N1 pdm09, A/H3N2) and highly pathogenic influenza virus (H5N1, H5N6, H7N9) on the basis of two surface antigens: hemagglutinin (HA) and neuraminidase (NA). Mutations, including substitutions, deletions, and insertions, are one of the most important mechanisms for producing new variant of influenza viruses. During the last 30 years; more than 50 viral threat has been evolved in South-East Asian countriesof them influenza is one of the major emerging and re-emerging infectious diseases of global concern. Similar to tropical and sub-tropical countries of Southeast Asia; circulation of A/H1N1 pdm09, A/H3N2 and influenza B has been circulating throughout the year with the peak during July-November in Nepal. However; the rate of infection transmission reach peak during the post-rain and winter season of Nepal.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huihui Kong ◽  
David F. Burke ◽  
Tiago Jose da Silva Lopes ◽  
Kosuke Takada ◽  
Masaki Imai ◽  
...  

ABSTRACT Since the emergence of highly pathogenic avian influenza viruses of the H5 subtype, the major viral antigen, hemagglutinin (HA), has undergone constant evolution, resulting in numerous genetic and antigenic (sub)clades. To explore the consequences of amino acid changes at sites that may affect the antigenicity of H5 viruses, we simultaneously mutated 17 amino acid positions of an H5 HA by using a synthetic gene library that, theoretically, encodes all combinations of the 20 amino acids at the 17 positions. All 251 mutant viruses sequenced possessed ≥13 amino acid substitutions in HA, demonstrating that the targeted sites can accommodate a substantial number of mutations. Selection with ferret sera raised against H5 viruses of different clades resulted in the isolation of 39 genotypes. Further analysis of seven variants demonstrated that they were antigenically different from the parental virus and replicated efficiently in mammalian cells. Our data demonstrate the substantial plasticity of the influenza virus H5 HA protein, which may lead to novel antigenic variants. IMPORTANCE The HA protein of influenza A viruses is the major viral antigen. In this study, we simultaneously introduced mutations at 17 amino acid positions of an H5 HA expected to affect antigenicity. Viruses with ≥13 amino acid changes in HA were viable, and some had altered antigenic properties. H5 HA can therefore accommodate many mutations in regions that affect antigenicity. The substantial plasticity of H5 HA may facilitate the emergence of novel antigenic variants.


mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Z. Beau Reneer ◽  
Amanda L. Skarlupka ◽  
Parker J. Jamieson ◽  
Ted M. Ross

ABSTRACT Influenza vaccines have traditionally been tested in naive mice and ferrets. However, humans are first exposed to influenza viruses within the first few years of their lives. Therefore, there is a pressing need to test influenza virus vaccines in animal models that have been previously exposed to influenza viruses before being vaccinated. In this study, previously described H2 computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) vaccines (Z1 and Z5) were tested in influenza virus “preimmune” ferret models. Ferrets were infected with historical, seasonal influenza viruses to establish preimmunity. These preimmune ferrets were then vaccinated with either COBRA H2 HA recombinant proteins or wild-type H2 HA recombinant proteins in a prime-boost regimen. A set of naive preimmune or nonpreimmune ferrets were also vaccinated to control for the effects of the multiple different preimmunities. All of the ferrets were then challenged with a swine H2N3 influenza virus. Ferrets with preexisting immune responses influenced recombinant H2 HA-elicited antibodies following vaccination, as measured by hemagglutination inhibition (HAI) and classical neutralization assays. Having both H3N2 and H1N1 immunological memory regardless of the order of exposure significantly decreased viral nasal wash titers and completely protected all ferrets from both morbidity and mortality, including the mock-vaccinated ferrets in the group. While the vast majority of the preimmune ferrets were protected from both morbidity and mortality across all of the different preimmunities, the Z1 COBRA HA-vaccinated ferrets had significantly higher antibody titers and recognized the highest number of H2 influenza viruses in a classical neutralization assay compared to the other H2 HA vaccines. IMPORTANCE H1N1 and H3N2 influenza viruses have cocirculated in the human population since 1977. Nearly every human alive today has antibodies and memory B and T cells against these two subtypes of influenza viruses. H2N2 influenza viruses caused the 1957 global pandemic and people born after 1968 have never been exposed to H2 influenza viruses. It is quite likely that a future H2 influenza virus could transmit within the human population and start a new global pandemic, since the majority of people alive today are immunologically naive to viruses of this subtype. Therefore, an effective vaccine for H2 influenza viruses should be tested in an animal model with previous exposure to influenza viruses that have circulated in humans. Ferrets were infected with historical influenza A viruses to more accurately mimic the immune responses in people who have preexisting immune responses to seasonal influenza viruses. In this study, preimmune ferrets were vaccinated with wild-type (WT) and COBRA H2 recombinant HA proteins in order to examine the effects that preexisting immunity to seasonal human influenza viruses have on the elicitation of broadly cross-reactive antibodies from heterologous vaccination.


2010 ◽  
Vol 84 (9) ◽  
pp. 4395-4406 ◽  
Author(s):  
Kendra A. Bussey ◽  
Tatiana L. Bousse ◽  
Emily A. Desmet ◽  
Baek Kim ◽  
Toru Takimoto

ABSTRACT The direct infection of humans with highly pathogenic avian H5N1 influenza viruses has suggested viral mutation as one mechanism for the emergence of novel human influenza A viruses. Although the polymerase complex is known to be a key component in host adaptation, mutations that enhance the polymerase activity of avian viruses in mammalian hosts are not fully characterized. The genomic comparison of influenza A virus isolates has identified highly conserved residues in influenza proteins that are specific to either human or avian viruses, including 10 residues in PB2. We characterized the activity of avian polymerase complexes containing avian-to-human mutations at these conserved PB2 residues and found that, in addition to the E627K mutation, the PB2 mutation T271A enhances polymerase activity in human cells. We confirmed the effects of the T271A mutation using recombinant WSN viruses containing avian NP and polymerase genes with wild-type (WT) or mutant PB2. The 271A virus showed enhanced growth compared to that of the WT in mammalian cells in vitro. The 271A mutant did not increase viral pathogenicity significantly in mice compared to that of the 627K mutant, but it did enhance the lung virus titer. Also, cell infiltration was more evident in lungs of 271A-infected mice than in those of the WT. Interestingly, the avian-derived PB2 of the 2009 pandemic H1N1 influenza virus has 271A. The characterization of the polymerase activity of A/California/04/2009 (H1N1) and corresponding PB2 mutants indicates that the high polymerase activity of the pandemic strain in mammalian cells is, in part, dependent on 271A. Our results clearly indicate the contribution of PB2 amino acid 271 to enhanced polymerase activity and viral growth in mammalian hosts.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Frank Y. K. Wong ◽  
Celeste Donato ◽  
Yi-Mo Deng ◽  
Don Teng ◽  
Naomi Komadina ◽  
...  

ABSTRACTGlobal swine populations infected with influenza A viruses pose a persistent pandemic risk. With the exception of a few countries, our understanding of the genetic diversity of swine influenza viruses is limited, hampering control measures and pandemic risk assessment. Here we report the genomic characteristics and evolutionary history of influenza A viruses isolated in Australia from 2012 to 2016 from two geographically isolated swine populations in the states of Queensland and Western Australia. Phylogenetic analysis with an expansive human and swine influenza virus data set comprising >40,000 sequences sampled globally revealed evidence of the pervasive introduction and long-term establishment of gene segments derived from several human influenza viruses of past seasons, including the H1N1/1977, H1N1/1995, H3N2/1968, and H3N2/2003, and the H1N1 2009 pandemic (H1N1pdm09) influenza A viruses, and a genotype that contained gene segments derived from the past three pandemics (1968, reemerged 1977, and 2009). Of the six human-derived gene lineages, only one, comprising two viruses isolated in Queensland during 2012, was closely related to swine viruses detected from other regions, indicating a previously undetected circulation of Australian swine lineages for approximately 3 to 44 years. Although the date of introduction of these lineages into Australian swine populations could not be accurately ascertained, we found evidence of sustained transmission of two lineages in swine from 2012 to 2016. The continued detection of human-origin influenza virus lineages in swine over several decades with little or unpredictable antigenic drift indicates that isolated swine populations can act as antigenic archives of human influenza viruses, raising the risk of reemergence in humans when sufficient susceptible populations arise.IMPORTANCEWe describe the evolutionary origins and antigenic properties of influenza A viruses isolated from two separate Australian swine populations from 2012 to 2016, showing that these viruses are distinct from each other and from those isolated from swine globally. Whole-genome sequencing of virus isolates revealed a high genotypic diversity that had been generated exclusively through the introduction and establishment of human influenza viruses that circulated in past seasons. We detected six reassortants with gene segments derived from human H1N1/H1N1pdm09 and various human H3N2 viruses that circulated during various periods since 1968. We also found that these swine viruses were not related to swine viruses collected elsewhere, indicating independent circulation. The detection of unique lineages and genotypes in Australia suggests that isolated swine populations that are sufficiently large can sustain influenza virus for extensive periods; we show direct evidence of a sustained transmission for at least 4 years between 2012 and 2016.


2018 ◽  
Vol 92 (11) ◽  
pp. e00425-18 ◽  
Author(s):  
B. Mazel-Sanchez ◽  
I. Boal-Carvalho ◽  
F. Silva ◽  
R. Dijkman ◽  
M. Schmolke

ABSTRACTHighly pathogenic influenza A viruses (IAV) from avian hosts were first reported to directly infect humans 20 years ago. However, such infections are rare events, and our understanding of factors promoting or restricting zoonotic transmission is still limited. One accessory protein of IAV, PB1-F2, was associated with pathogenicity of pandemic and zoonotic IAV. This short (90-amino-acid) peptide does not harbor an enzymatic function. We thus identified host factors interacting with H5N1 PB1-F2, which could explain its importance for virulence. PB1-F2 binds to HCLS1-associated protein X1 (HAX-1), a recently identified host restriction factor of the PA subunit of IAV polymerase complexes. We demonstrate that the PA of a mammal-adapted H1N1 IAV is resistant to HAX-1 imposed restriction, while the PA of an avian-origin H5N1 IAV remains sensitive. We also showed HAX-1 sensitivity for PAs of A/Brevig Mission/1/1918 (H1N1) and A/Shanghai/1/2013 (H7N9), two avian-origin zoonotic IAV. Inhibition of H5N1 polymerase by HAX-1 can be alleviated by its PB1-F2 through direct competition. Accordingly, replication of PB1-F2-deficient H5N1 IAV is attenuated in the presence of large amounts of HAX-1. Mammal-adapted H1N1 and H3N2 viruses do not display this dependence on PB1-F2 for efficient replication in the presence of HAX-1. We propose that PB1-F2 plays a key role in zoonotic transmission of avian H5N1 IAV into humans.IMPORTANCEAquatic and shore birds are the natural reservoir of influenza A viruses from which the virus can jump into a variety of bird and mammal host species, including humans. H5N1 influenza viruses are a good model for this process. They pose an ongoing threat to human and animal health due to their high mortality rates. However, it is currently unclear what restricts these interspecies jumps on the host side or what promotes them on the virus side. Here we show that a short viral peptide, PB1-F2, helps H5N1 bird influenza viruses to overcome a human restriction factor of the viral polymerase complex HAX-1. Interestingly, we found that human influenza A virus polymerase complexes are already adapted to HAX-1 and do not require this function of PB1-F2. We thus propose that a functional full-length PB1-F2 supports direct transmission of bird viruses into humans.


2005 ◽  
Vol 79 (17) ◽  
pp. 11269-11279 ◽  
Author(s):  
K. M. Sturm-Ramirez ◽  
D. J. Hulse-Post ◽  
E. A. Govorkova ◽  
J. Humberd ◽  
P. Seiler ◽  
...  

ABSTRACT Wild waterfowl are the natural reservoir of all influenza A viruses, and these viruses are usually nonpathogenic in these birds. However, since late 2002, H5N1 outbreaks in Asia have resulted in mortality among waterfowl in recreational parks, domestic flocks, and wild migratory birds. The evolutionary stasis between influenza virus and its natural host may have been disrupted, prompting us to ask whether waterfowl are resistant to H5N1 influenza virus disease and whether they can still act as a reservoir for these viruses. To better understand the biology of H5N1 viruses in ducks and attempt to answer this question, we inoculated juvenile mallards with 23 different H5N1 influenza viruses isolated in Asia between 2003 and 2004. All virus isolates replicated efficiently in inoculated ducks, and 22 were transmitted to susceptible contacts. Viruses replicated to higher levels in the trachea than in the cloaca of both inoculated and contact birds, suggesting that the digestive tract is not the main site of H5N1 influenza virus replication in ducks and that the fecal-oral route may no longer be the main transmission path. The virus isolates' pathogenicities varied from completely nonpathogenic to highly lethal and were positively correlated with tracheal virus titers. Nevertheless, the eight virus isolates that were nonpathogenic in ducks replicated and transmitted efficiently to naïve contacts, suggesting that highly pathogenic H5N1 viruses causing minimal signs of disease in ducks can propagate silently and efficiently among domestic and wild ducks in Asia and that they represent a serious threat to human and veterinary public health.


Sign in / Sign up

Export Citation Format

Share Document