scholarly journals H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells

2018 ◽  
Vol 92 (11) ◽  
pp. e00425-18 ◽  
Author(s):  
B. Mazel-Sanchez ◽  
I. Boal-Carvalho ◽  
F. Silva ◽  
R. Dijkman ◽  
M. Schmolke

ABSTRACTHighly pathogenic influenza A viruses (IAV) from avian hosts were first reported to directly infect humans 20 years ago. However, such infections are rare events, and our understanding of factors promoting or restricting zoonotic transmission is still limited. One accessory protein of IAV, PB1-F2, was associated with pathogenicity of pandemic and zoonotic IAV. This short (90-amino-acid) peptide does not harbor an enzymatic function. We thus identified host factors interacting with H5N1 PB1-F2, which could explain its importance for virulence. PB1-F2 binds to HCLS1-associated protein X1 (HAX-1), a recently identified host restriction factor of the PA subunit of IAV polymerase complexes. We demonstrate that the PA of a mammal-adapted H1N1 IAV is resistant to HAX-1 imposed restriction, while the PA of an avian-origin H5N1 IAV remains sensitive. We also showed HAX-1 sensitivity for PAs of A/Brevig Mission/1/1918 (H1N1) and A/Shanghai/1/2013 (H7N9), two avian-origin zoonotic IAV. Inhibition of H5N1 polymerase by HAX-1 can be alleviated by its PB1-F2 through direct competition. Accordingly, replication of PB1-F2-deficient H5N1 IAV is attenuated in the presence of large amounts of HAX-1. Mammal-adapted H1N1 and H3N2 viruses do not display this dependence on PB1-F2 for efficient replication in the presence of HAX-1. We propose that PB1-F2 plays a key role in zoonotic transmission of avian H5N1 IAV into humans.IMPORTANCEAquatic and shore birds are the natural reservoir of influenza A viruses from which the virus can jump into a variety of bird and mammal host species, including humans. H5N1 influenza viruses are a good model for this process. They pose an ongoing threat to human and animal health due to their high mortality rates. However, it is currently unclear what restricts these interspecies jumps on the host side or what promotes them on the virus side. Here we show that a short viral peptide, PB1-F2, helps H5N1 bird influenza viruses to overcome a human restriction factor of the viral polymerase complex HAX-1. Interestingly, we found that human influenza A virus polymerase complexes are already adapted to HAX-1 and do not require this function of PB1-F2. We thus propose that a functional full-length PB1-F2 supports direct transmission of bird viruses into humans.

2020 ◽  
Vol 13 (626) ◽  
pp. eaaz3381 ◽  
Author(s):  
Yongquan He ◽  
Weihui Fu ◽  
Kangli Cao ◽  
Qian He ◽  
Xiangqing Ding ◽  
...  

Type I interferons (IFNs) are the first line of defense against viral infection. Using a mouse model of influenza A virus infection, we found that IFN-κ was one of the earliest responding type I IFNs after infection with H9N2, a low-pathogenic avian influenza A virus, whereas this early induction did not occur upon infection with the epidemic-causing H7N9 virus. IFN-κ efficiently suppressed the replication of various influenza viruses in cultured human lung cells, and chromodomain helicase DNA binding protein 6 (CHD6) was the major effector for the antiviral activity of IFN-κ, but not for that of IFN-α or IFN-β. The induction of CHD6 required both of the type I IFN receptor subunits IFNAR1 and IFNAR2, the mitogen-activated protein kinase (MAPK) p38, and the transcription factor c-Fos but was independent of signal transducer and activator of transcription 1 (STAT1) activity. In addition, we showed that pretreatment with IFN-κ protected mice from lethal influenza viral challenge. Together, our findings identify an IFN-κ–specific pathway that constrains influenza A virus and provide evidence that IFN-κ may have potential as a preventative and therapeutic agent against influenza A virus.


2008 ◽  
Vol 82 (7) ◽  
pp. 3624-3631 ◽  
Author(s):  
Jan Dittmann ◽  
Silke Stertz ◽  
Daniel Grimm ◽  
John Steel ◽  
Adolfo García-Sastre ◽  
...  

ABSTRACT Interferon-mediated host responses are of great importance for controlling influenza A virus infections. It is well established that the interferon-induced Mx proteins possess powerful antiviral activities toward most influenza viruses. Here we analyzed a range of influenza A virus strains for their sensitivities to murine Mx1 and human MxA proteins and found remarkable differences. Virus strains of avian origin were highly sensitive to Mx1, whereas strains of human origin showed much weaker responses. Artificial reassortments of the viral components in a minireplicon system identified the viral nucleoprotein as the main target structure of Mx1. Interestingly, the recently reconstructed 1918 H1N1 “Spanish flu” virus was much less sensitive than the highly pathogenic avian H5N1 strain A/Vietnam/1203/04 when tested in a minireplicon system. Importantly, the human 1918 virus-based minireplicon system was almost insensitive to inhibition by human MxA, whereas the avian influenza A virus H5N1-derived system was well controlled by MxA. These findings suggest that Mx proteins provide a formidable hurdle that hinders influenza A viruses of avian origin from crossing the species barrier to humans. They further imply that the observed insensitivity of the 1918 virus-based replicon to the antiviral activity of human MxA is a hitherto unrecognized characteristic of the “Spanish flu” virus that may contribute to the high virulence of this unusual pandemic strain.


2005 ◽  
Vol 79 (15) ◽  
pp. 9926-9932 ◽  
Author(s):  
Kyoko Shinya ◽  
Masato Hatta ◽  
Shinya Yamada ◽  
Ayato Takada ◽  
Shinji Watanabe ◽  
...  

ABSTRACT In 2003, H5N1 avian influenza virus infections were diagnosed in two Hong Kong residents who had visited the Fujian province in mainland China, affording us the opportunity to characterize one of the viral isolates, A/Hong Kong/213/03 (HK213; H5N1). In contrast to H5N1 viruses isolated from humans during the 1997 outbreak in Hong Kong, HK213 retained several features of aquatic bird viruses, including the lack of a deletion in the neuraminidase stalk and the absence of additional oligosaccharide chains at the globular head of the hemagglutinin molecule. It demonstrated weak pathogenicity in mice and ferrets but caused lethal infection in chickens. The original isolate failed to produce disease in ducks but became more pathogenic after five passages. Taken together, these findings portray the HK213 isolate as an aquatic avian influenza A virus without the molecular changes associated with the replication of H5N1 avian viruses in land-based poultry such as chickens. This case challenges the view that adaptation to land-based poultry is a prerequisite for the replication of aquatic avian influenza A viruses in humans.


2010 ◽  
Vol 84 (9) ◽  
pp. 4395-4406 ◽  
Author(s):  
Kendra A. Bussey ◽  
Tatiana L. Bousse ◽  
Emily A. Desmet ◽  
Baek Kim ◽  
Toru Takimoto

ABSTRACT The direct infection of humans with highly pathogenic avian H5N1 influenza viruses has suggested viral mutation as one mechanism for the emergence of novel human influenza A viruses. Although the polymerase complex is known to be a key component in host adaptation, mutations that enhance the polymerase activity of avian viruses in mammalian hosts are not fully characterized. The genomic comparison of influenza A virus isolates has identified highly conserved residues in influenza proteins that are specific to either human or avian viruses, including 10 residues in PB2. We characterized the activity of avian polymerase complexes containing avian-to-human mutations at these conserved PB2 residues and found that, in addition to the E627K mutation, the PB2 mutation T271A enhances polymerase activity in human cells. We confirmed the effects of the T271A mutation using recombinant WSN viruses containing avian NP and polymerase genes with wild-type (WT) or mutant PB2. The 271A virus showed enhanced growth compared to that of the WT in mammalian cells in vitro. The 271A mutant did not increase viral pathogenicity significantly in mice compared to that of the 627K mutant, but it did enhance the lung virus titer. Also, cell infiltration was more evident in lungs of 271A-infected mice than in those of the WT. Interestingly, the avian-derived PB2 of the 2009 pandemic H1N1 influenza virus has 271A. The characterization of the polymerase activity of A/California/04/2009 (H1N1) and corresponding PB2 mutants indicates that the high polymerase activity of the pandemic strain in mammalian cells is, in part, dependent on 271A. Our results clearly indicate the contribution of PB2 amino acid 271 to enhanced polymerase activity and viral growth in mammalian hosts.


2010 ◽  
Vol 84 (11) ◽  
pp. 5715-5718 ◽  
Author(s):  
Elodie Ghedin ◽  
David E. Wentworth ◽  
Rebecca A. Halpin ◽  
Xudong Lin ◽  
Jayati Bera ◽  
...  

ABSTRACT The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1171
Author(s):  
Yaron Drori ◽  
Jasmine Jacob-Hirsch ◽  
Rakefet Pando ◽  
Aharona Glatman-Freedman ◽  
Nehemya Friedman ◽  
...  

Influenza viruses and respiratory syncytial virus (RSV) are respiratory viruses that primarily circulate worldwide during the autumn and winter seasons. Seasonal surveillance has shown that RSV infection generally precedes influenza. However, in the last four winter seasons (2016–2020) an overlap of the morbidity peaks of both viruses was observed in Israel, and was paralleled by significantly lower RSV infection rates. To investigate whether the influenza A virus inhibits RSV, human cervical carcinoma (HEp2) cells or mice were co-infected with influenza A and RSV. Influenza A inhibited RSV growth, both in vitro and in vivo. Mass spectrometry analysis of mouse lungs infected with influenza A identified a two-wave pattern of protein expression upregulation, which included members of the interferon-induced protein with the tetratricopeptide (IFITs) family. Interestingly, in the second wave, influenza A viruses were no longer detectable in mouse lungs. In addition, knockdown and overexpression of IFITs in HEp2 cells affected RSV multiplicity. In conclusion, influenza A infection inhibits RSV infectivity via upregulation of IFIT proteins in a two-wave modality. Understanding the immune system involvement in the interaction between influenza A and RSV viruses will contribute to the development of future treatment strategies against these viruses.


2015 ◽  
Vol 22 (8) ◽  
pp. 957-964 ◽  
Author(s):  
Karen L. Laurie ◽  
Othmar G. Engelhardt ◽  
John Wood ◽  
Alan Heath ◽  
Jacqueline M. Katz ◽  
...  

ABSTRACTThe microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HA MN assay protocols to enable better correlation of these assays in the future.


RSC Advances ◽  
2017 ◽  
Vol 7 (16) ◽  
pp. 9620-9627 ◽  
Author(s):  
Yongshi Yu ◽  
Jie Zheng ◽  
Lei Cao ◽  
Shu Li ◽  
Xiwang Li ◽  
...  

The simple scaffold furan-carboxamide derivatives were firstly identified as novel inhibitors of lethal H5N1 influenza A virus.


2020 ◽  
Author(s):  
Rui Yin ◽  
Zihan Luo ◽  
Pei Zhuang ◽  
Zhuoyi Lin ◽  
Chee Keong Kwoh

AbstractMotivationInfluenza viruses are persistently threatening public health, causing annual epidemics and sporadic pandemics. The evolution of influenza viruses remains to be the main obstacle in the effectiveness of antiviral treatments due to rapid mutations. Previous work has been investigated to reveal the determinants of virulence of the influenza A virus. To further facilitate flu surveillance, explicit detection of influenza virulence is crucial to protect public health from potential future pandemics.ResultsIn this paper, we propose a weighted ensemble convolutional neural network for the virulence prediction of influenza A viruses named VirPreNet that uses all 8 segments. Firstly, mouse lethal dose 50 is exerted to label the virulence of infections into two classes, namely avirulent and virulent. A numerical representation of amino acids named ProtVec is applied to the 8-segments in a distributed manner to encode the biological sequences. After splittings and embeddings of influenza strains, the ensemble convolutional neural network is constructed as the base model on the influenza dataset of each segment, which serves as the VirPreNet’s main part. Followed by a linear layer, the initial predictive outcomes are integrated and assigned with different weights for the final prediction. The experimental results on the collected influenza dataset indicate that VirPreNet achieves state-of-the-art performance combining ProtVec with our proposed architecture. It outperforms baseline methods on the independent testing data. Moreover, our proposed model reveals the importance of PB2 and HA segments on the virulence prediction. We believe that our model may provide new insights into the investigation of influenza [email protected] and ImplementationCodes and data to generate the VirPreNet are publicly available at https://github.com/Rayin-saber/VirPreNet


Sign in / Sign up

Export Citation Format

Share Document