scholarly journals Decorin Binding Proteins A and B in the Serodiagnosis of Lyme Disease in North America

2014 ◽  
Vol 21 (10) ◽  
pp. 1426-1436 ◽  
Author(s):  
Paul M. Arnaboldi ◽  
Mariya Sambir ◽  
Raymond J. Dattwyler

ABSTRACTThe laboratory diagnosis of Lyme disease is based upon the detection of antibodies generated againstBorrelia burgdorferiusing a two-tier assay, typically consisting of an enzyme-linked immunosorbent assay (ELISA), followed by a Western blot. This system, put into place to address the nonspecificity associated with standalone first-tier assays, is insensitive for diagnosing early infection, when most people seek care. The use of bacterial lysates or whole-protein antigens as first-tier assay targets contributes to nonspecificity due, in part, to the presence of cross-reactive epitopes that are also found in other bacteria. This precludes their use as sensitive standalone assays. The use of peptides containing linear epitopes that are highly specific forB. burgdorferioffers a method for reducing this cross-reactivity. In the present study, we mapped the linear epitopes of the prominently expressedBorreliaadhesins decorin binding protein A (DbpA) and DbpB. We identified several epitopes in each protein that were highly conserved among North American strains ofB. burgdorferi, and we screened peptides containing specific epitopes using serum panels from early and late Lyme disease patients. The individual peptides primarily detected IgM but not IgG, while the proteins efficiently detected both IgM and IgG. While no individual peptide demonstrated better utility for antibody detection than its respective whole protein, an assay containing a combination of a DbpA and a DbpB peptide adequately detected both IgM and IgG, accurately identifying 87.5% (84/96) of the early Lyme disease patients and 80.0% (16/20) of the late Lyme disease patients.

2014 ◽  
Vol 21 (5) ◽  
pp. 704-711 ◽  
Author(s):  
Giacomo Signorino ◽  
Paul M. Arnaboldi ◽  
Mary M. Petzke ◽  
Raymond J. Dattwyler

ABSTRACTLaboratory diagnosis of Lyme disease is based on the serological detection of antibodies against the etiologic agentBorrelia burgdorferi. Current diagnostics are insensitive at detecting early infection, when treatment is most effective. This deficiency results from the limited number ofB. burgdorferiantigens expressed in early infection and the use of an insensitive two-tier paradigm, put in place to deal with insufficient specificity associated with the use of whole-protein antigens and/or bacterial lysates as serodiagnostic targets. Whole-protein antigens contain epitopes that are unique toB. burgdorferias well as cross-reactive epitopes found in other bacteria. One method for overcoming the limitations imposed by cross-reactive epitopes is the use of short peptides containing epitopes unique toB. burgdorferias antigen targets. This eliminates nonspecific epitopes. Using overlapping peptide libraries, we performed epitope mapping of linear epitopes in oligopeptide permease A2 (OppA2), a member of the oligopeptide permease (Opp) family of peptide transporters, expressed during earlyB. burgdorferiinfection. We identified 9 epitopes, synthesized peptides containing these epitopes, and screened those using panels of blood from patients with early Lyme disease, rheumatoid arthritis (RA), or syphilis or from healthy individuals. Two of the peptides, OppA2 (191-225) (amino acids comprising the peptide are shown in parentheses) and OppA2 (381-400), are highly conserved among the three major pathogenicBorreliaspecies responsible for most Lyme disease cases in North America and Europe. They detected antibodies in Lyme disease patient sera with sufficient sensitivity and specificity to indicate that they could have value in a serological assay for Lyme disease.


2011 ◽  
Vol 18 (6) ◽  
pp. 984-989 ◽  
Author(s):  
Paula A. Sartor ◽  
Martha V. Cardinal ◽  
Marcela M. Orozco ◽  
Ricardo E. Gürtler ◽  
M. Susana Leguizamón

ABSTRACTThe detection ofTrypanosoma cruziinfection in domestic dogs and cats is relevant to evaluating human transmission risks and the effectiveness of insecticide spraying campaigns. However, the serological assays routinely used are associated with cross-reactivity in sera from mammals infected withLeishmaniaspp. We used atrans-sialidase inhibition assay (TIA) forT. cruzidiagnosis in serum samples from 199 dogs and 57 cats from areas where these types of infections are endemic. TIA is based on the antibody neutralization of recombinanttrans-sialidase, an enzyme that is not detected in the coendemicLeishmaniaspecies orTrypanosoma rangeliparasites.T. cruziinfection was also evaluated by conventional serology (CS) (indirect immunofluorescence, indirect hemagglutination, enzyme-linked immunosorbent assay, and immunochromatographic dipstick test) and xenodiagnosis. Sera from 30 dogs and 15 cats from areas where these organisms are not endemic and 5 dogs with visceral leishmaniasis were found to be nonreactive by TIA and CS. Samples from dogs and cats demonstrated 91 and 95% copositivities between TIA and CS, whereas the conegativities were 98 and 97%, respectively. Sera from xenodiagnosis-positive dogs and cats also reacted by TIA (copositivities of 97 and 83%, respectively). TIA was reactive in three CS-negative samples and was able to resolve results in two cat serum samples that were CS inconclusive. Our study is the first to describe the development oftrans-sialidase neutralizing antibodies in naturally infected dogs and cats. High CS conegativity and the absence oftrans-sialidase neutralization in dog sera from areas where leishmaniasis is not endemic and from dogs with visceral leishmaniasis support TIA specificity. The TIA may be a useful tool forT. cruzidetection in the main domestic reservoirs.


2005 ◽  
Vol 12 (9) ◽  
pp. 1036-1040 ◽  
Author(s):  
Adriana R. Marques ◽  
Ronald L. Hornung ◽  
Len Dally ◽  
Mario T. Philipp

ABSTRACT The Borrelia burgdorferi-specific immune complex (IC) test, which uses polyethylene glycol (PEG) precipitation to isolate ICs from serum, has been used as a research test in the laboratory diagnosis of early Lyme disease (LD) and has been proposed as a marker of active infection. We examined whether B. burgdorferi-specific antibodies were present within PEG-precipitated ICs (PEG-ICs) in patients with LD, posttreatment Lyme disease syndrome, and controls, including individuals who received the outer surface protein A (OspA) vaccine. Using a B. burgdorferi whole-cell enzyme-linked immunosorbent assay (ELISA), we obtained positive PEG-IC results not only in patients with a history of LD, but also in individuals vaccinated with OspA vaccine. The frequency of positive PEG-IC ELISAs in OspA vaccinees was significantly higher with ELISA-reactive than with ELISA-negative unprocessed serum samples (P = 0.001), demonstrating dependency between the tests. Similar results were found using samples from rhesus macaques infected with B. burgdorferi, uninfected macaques vaccinated with OspA, and controls. Therefore, testing for the presence of antibodies against B. burgdorferi in PEG-IC preparations is not more likely to reflect active infection than testing in unprocessed serum and should not be used in individuals who received the OspA vaccine.


2018 ◽  
Vol 87 (3) ◽  
Author(s):  
Win-Yan Chan ◽  
Claire Entwisle ◽  
Giuseppe Ercoli ◽  
Elise Ramos-Sevillano ◽  
Ann McIlgorm ◽  
...  

ABSTRACTCurrent vaccination againstStreptococcus pneumoniaeuses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared fromS. pneumoniaeTIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains ofS. pneumoniaewere opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologousS. pneumoniaestrains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection againstS. pneumoniae.


2020 ◽  
Vol 58 (5) ◽  
Author(s):  
Janette M. Harro ◽  
Mark E. Shirtliff ◽  
William Arnold ◽  
Jennifer M. Kofonow ◽  
Chad Dammling ◽  
...  

ABSTRACT Prosthetic joint infections are difficult to diagnose and treat due to biofilm formation by the causative pathogens. Pathogen identification relies on microbial culture that requires days to weeks, and in the case of chronic biofilm infections, lacks sensitivity. Diagnosis of infection is often delayed past the point of effective treatment such that only the removal of the implant is curative. Early diagnosis of an infection based on antibody detection might lead to less invasive, early interventions. Our study examined antibody-based assays against the Staphylococcus aureus biofilm-upregulated antigens SAOCOL0486 (a lipoprotein), glucosaminidase (a domain of SACOL1062), and SACOL0688 (the manganese transporter MntC) for detection of chronic S. aureus infection. We evaluated these antigens by enzyme-linked immunosorbent assay (ELISA) using sera from naive rabbits and rabbits with S. aureus-mediated osteomyelitis, and then we validated a proof of concept for the lateral flow assay (LFA). The SACOL0688 LFA demonstrated 100% specificity and 100% sensitivity. We demonstrated the clinical diagnostic utility of the SACOL0688 antigen using synovial fluid (SF) from humans with orthopedic implant infections. Elevated antibody levels to SACOL0688 in clinical SF specimens correlated with 91% sensitivity and 100% specificity for the diagnosis of S. aureus infection by ELISA. We found measuring antibodies levels to SACOL0688 in SF using ELISA or LFA provides a tool for the sensitive and specific diagnosis of S. aureus prosthetic joint infection. Development of the LFA diagnostic modality is a desirable, cost-effective option, potentially providing rapid readout in minutes for chronic biofilm infections.


2013 ◽  
Vol 21 (1) ◽  
pp. 96-106 ◽  
Author(s):  
Lourena E. Costa ◽  
Mayara I. S. Lima ◽  
Miguel A. Chávez-Fumagalli ◽  
Daniel Menezes-Souza ◽  
Vivian T. Martins ◽  
...  

ABSTRACTVisceral leishmaniasis (VL) is a zoonotic disease that is endemic to Brazil, where dogs are the main domestic parasite reservoirs, and the percentages of infected dogs living in regions where canine VL (CVL) is endemic have ranged from 10% to 62%. Despite technological advances, some problems have been reported with CVL serodiagnosis. The present study describes a sequential subtractive selection through phage display technology from polyclonal antibodies of negative and positive sera that resulted in the identification of potential bacteriophage-fused peptides that were highly sensitive and specific to antibodies of CVL. A negative selection was performed in which phage clones were adhered to purified IgGs from healthy andTrypanosoma cruzi-infected dogs to eliminate cross-reactive phages. The remaining supernatant nonadhered phages were submitted to positive selection against IgG from the blood serum of dogs that were infected withLeishmania infantum. Phage clones that adhered to purified IgGs from the CVL-infected serum samples were selected. Eighteen clones were identified and their reactivities tested by a phage enzyme-linked immunosorbent assay (phage-ELISA) against the serum samples from infected dogs (n= 31) compared to those from vaccinated dogs (n= 21), experimentally infected dogs with cross-reactive parasites (n= 23), and healthy controls (n= 17). Eight clones presented sensitivity, specificity, and positive and negative predictive values of 100%, and they showed no cross-reactivity withT. cruzi- orEhrlichia canis-infected dogs or with dogs vaccinated with two different commercial CVL vaccines in Brazil. Our study identified eight mimotopes ofL. infantumantigens with 100% accuracy for CVL serodiagnosis. The use of these mimotopes by phage-ELISA proved to be an excellent assay that was reproducible, simple, fast, and inexpensive, and it can be applied in CVL-monitoring programs.


2009 ◽  
Vol 16 (9) ◽  
pp. 1302-1308 ◽  
Author(s):  
Rooyen T. Mavenyengwa ◽  
Johan A. Maeland ◽  
Sylvester R. Moyo

ABSTRACTGroup B streptococci (GBS) express a variety of surface-exposed and strain-variable proteins which function as phenotypic markers and as antigens which are able to induce protective immunity in experimental settings. Among these proteins, the chimeric and immunologically cross-reacting alpha-like proteins are particularly important. Another protein, R3, which has been less well studied, occurred at a frequency of 21.5% in GBS from Zimbabwe and, notably, occurred in serotype V strains at a frequency of 75.9%. Working with rabbit antiserum raised against the R3 reference strain ATCC 49447 (strain 10/84; serotype V/R3) to detect the expression of the R3 protein, we recorded findings which suggested that strain 10/84 expressed a strain-variable protein antigen, in addition to R3. The antigen was detected by various enzyme-linked immunosorbent assay-based tests by using acid extract antigens or GBS whole-cell coats and by whole-cell-based Western blotting. We named the putative novel antigen the Z antigen. The Z antigen was a high-molecular-mass antigen that was susceptible to degradation by pepsin and trypsin but that was resistant tom-periodate oxidation and failed to show immunological cross-reactivity with any of a variety of other GBS protein antigens. The Z antigen was expressed by 33/121 (27.2%) of strains of a Zimbabwean GBS strain collection and by 64.2% and 72.4% of the type Ib and type V strains, respectively, and was occasionally expressed by GBS of other capsular serotypes. Thus, the putative novel GBS protein named Z showed distinct capsular antigen associations and presented as an important phenotypic marker in GBS from Zimbabwe. It may be an important antigen in GBS from larger areas of southern Africa. Its prevalence in GBS from Western countries is not known.


2016 ◽  
Vol 29 (3) ◽  
pp. 487-524 ◽  
Author(s):  
Didier Musso ◽  
Duane J. Gubler

SUMMARYZika virus (ZIKV) is an arthropod-borne virus (arbovirus) in the genusFlavivirusand the familyFlaviviridae. ZIKV was first isolated from a nonhuman primate in 1947 and from mosquitoes in 1948 in Africa, and ZIKV infections in humans were sporadic for half a century before emerging in the Pacific and the Americas. ZIKV is usually transmitted by the bite of infected mosquitoes. The clinical presentation of Zika fever is nonspecific and can be misdiagnosed as other infectious diseases, especially those due to arboviruses such as dengue and chikungunya. ZIKV infection was associated with only mild illness prior to the large French Polynesian outbreak in 2013 and 2014, when severe neurological complications were reported, and the emergence in Brazil of a dramatic increase in severe congenital malformations (microcephaly) suspected to be associated with ZIKV. Laboratory diagnosis of Zika fever relies on virus isolation or detection of ZIKV-specific RNA. Serological diagnosis is complicated by cross-reactivity among members of theFlavivirusgenus. The adaptation of ZIKV to an urban cycle involving humans and domestic mosquito vectors in tropical areas where dengue is endemic suggests that the incidence of ZIKV infections may be underestimated. There is a high potential for ZIKV emergence in urban centers in the tropics that are infested with competent mosquito vectors such asAedes aegyptiandAedes albopictus.


2006 ◽  
Vol 3 (3) ◽  
pp. 177-181 ◽  
Author(s):  
Xu Wen-Tao ◽  
Huang Kun-Lun ◽  
Deng Ai-Ke ◽  
Luo Yun-Bo

AbstractWe have developed and applied an immunoassay method to detect genetically modified (GM) rape containing phosphinothricin acetyltransferase (PAT). The purified PAT was identified by Western blotting and enzymic activity analysis. The polyclonal antibody against purified PAT protein was obtained and purified by both a saturated ammonium sulphate method and protein A-Sepharose 4B. The sensitivity and cross-reactivity of the polyclonal antibody has been demonstrated in an enzyme-linked immunosorbent assay (ELISA). The result of the ELISA for antiserum sensitivity was about 2×10−5mg/ml and the cross-reactivity determined experimentally showed a high degree of specificity for the antiserum used, because values were all less than 0.1%. Detection of transgenic plants was evaluated using two transgenic rape lines (MS1/RF1 and MS8/RF3) which could be easily distinguished by ELISA.


2013 ◽  
Vol 20 (4) ◽  
pp. 474-481 ◽  
Author(s):  
Paul M. Arnaboldi ◽  
Rudra Seedarnee ◽  
Mariya Sambir ◽  
Steven M. Callister ◽  
Josephine A. Imparato ◽  
...  

ABSTRACTCurrent serodiagnostic assays for Lyme disease are inadequate at detecting early infection due to poor sensitivity and nonspecificity that arise from the use of whole bacteria or bacterial proteins as assay targets; both targets contain epitopes that are cross-reactive with epitopes found in antigens of other bacterial species. Tests utilizing peptides that contain individual epitopes highly specific forBorrelia burgdorferias diagnostic targets are an attractive alternative to current assays. Using an overlapping peptide library, we mapped linear epitopes in OspC, a critical virulence factor ofB. burgdorferirequired for mammalian infection, and confirmed the results by enzyme-linked immunosorbent assay (ELISA). We identified a highly conserved 20-amino-acid peptide epitope, OspC1. Via ELISA, OspC1 detected specific IgM and/or IgG in 60 of 98 serum samples (62.1%) obtained from patients with erythema migrans (early Lyme disease) at the time of their initial presentation. By comparison, the commercially available OspC peptide PepC10 detected antibody in only 48 of 98 serum samples (49.0%). In addition, OspC1 generated fewer false-positive results among negative healthy and diseased (rheumatoid arthritis and positive Rapid Plasma Reagin [RPR+] test result) control populations than did PepC10. Both highly specific and more sensitive than currently available OspC peptides, OspC1 could have value as a component of a multipeptide Lyme disease serological assay with significantly improved capabilities for the diagnosis of early infection.


Sign in / Sign up

Export Citation Format

Share Document