scholarly journals Survey of Immunological Features of the Alpha-Like Proteins of Streptococcus agalactiae

2014 ◽  
Vol 22 (2) ◽  
pp. 153-159 ◽  
Author(s):  
Johan A. Maeland ◽  
Jan E. Afset ◽  
Randi V. Lyng ◽  
Andreas Radtke

ABSTRACTNearly allStreptococcus agalactiae(group B streptococcus [GBS]) strains express a protein which belongs to the so-called alpha-like proteins (Alps), of which Cα, Alp1, Alp2, Alp3, Rib, and Alp4 are known to occur in GBS. The Alps are chimeras which form mosaic structures on the GBS surface. Both N- and C-terminal stretches of the Alps possess immunogenic sites of dissimilar immunological specificity. In this review, we have compiled data dealing with the specificity of the N- and C-terminal immunogenic sites of the Alps. The majority of N-terminal sites show protein specificity while the C-terminal sites show broader cross-reactivity. Molecular serotyping has revealed that antibody-based serotyping has often resulted in erroneous Alp identification, due to persistence of cross-reacting antibodies in antisera for serotyping. Retrospectively, this could be expected on the basis of sequence analysis results. Some of the historical R proteins are in fact Alps. The data included in the review may provide a basis for decisions regarding techniques for the preparation of specific antisera for serotyping of GBS, for use in other approaches in GBS research, and for decision making in the context of GBS vaccine developments.

2019 ◽  
Vol 8 (6) ◽  
Author(s):  
A. Bashir ◽  
Z. Zunita ◽  
F. F. A. Jesse ◽  
S. Z. Ramanoon ◽  
M. L. Mohd-Azmi

Streptococcus agalactiae, commonly known as group B streptococcus (GBS), is among the most implicated pathogens in bovine mastitis worldwide. Proper control measures can curb both economic and public health effects it may cause.


mSphere ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Matthew J. Sullivan ◽  
Kelvin G. K. Goh ◽  
Glen C. Ulett

ABSTRACT Zinc is an essential trace element for normal bacterial physiology but, divergently, can intoxicate bacteria at high concentrations. Here, we define the molecular systems for Zn detoxification in Streptococcus agalactiae, also known as group B streptococcus, and examine the effects of resistance to Zn stress on virulence. We compared the growth of wild-type bacteria and mutants deleted for the Zn exporter, czcD, and the response regulator, sczA, using Zn-stress conditions in vitro. Macrophage antibiotic protection assays and a mouse model of disseminated infection were used to assess virulence. Global bacterial transcriptional responses to Zn stress were defined by RNA sequencing and quantitative reverse transcription-PCR. czcD and sczA enabled S. agalactiae to survive Zn stress, with the putative CzcD efflux system activated by SczA. Additional genes activated in response to Zn stress encompassed divalent cation transporters that contribute to regulation of Mn and Fe homeostasis. In vivo, the czcD-sczA Zn management axis supported virulence in the blood, heart, liver, and bladder. Additionally, several genes not previously linked to Zn stress in any bacterium, including, most notably, arcA for arginine deamination, also mediated resistance to Zn stress, representing a novel molecular mechanism of bacterial resistance to metal intoxication. Taken together, these findings show that S. agalactiae responds to Zn stress by sczA regulation of czcD, with additional novel mechanisms of resistance supported by arcA, encoding arginine deaminase. Cellular management of Zn stress in S. agalactiae supports virulence by facilitating bacterial survival in the host during systemic infection. IMPORTANCE Streptococcus agalactiae, also known as group B streptococcus, is an opportunistic pathogen that causes various diseases in humans and animals. This bacterium has genetic systems that enable zinc detoxification in environments of metal stress, but these systems remain largely undefined. Using a combination of genomic, genetic, and cellular assays, we show that this pathogen controls Zn export through CzcD to manage Zn stress and utilizes a system of arginine deamination never previously linked to metal stress responses in bacteria to survive metal intoxication. We show that these systems are crucial for survival of S. agalactiae in vitro during Zn stress and also enhance virulence during systemic infection in mice. These discoveries establish new molecular mechanisms of resistance to metal intoxication in bacteria; we suggest these mechanisms operate in other bacteria as a way to sustain microbial survival under conditions of metal stress, including in host environments.


2013 ◽  
Vol 58 (3) ◽  
pp. 1693-1698 ◽  
Author(s):  
Giorgio Piccinelli ◽  
Prabhavathi Fernandes ◽  
Carlo Bonfanti ◽  
Francesca Caccuri ◽  
Arnaldo Caruso ◽  
...  

ABSTRACTThein vitroantibacterial activity of solithromycin (CEM-101) against macrolide-resistant isolates (n= 62) ofStreptococcus agalactiae(group B streptococcus [GBS]) was determined. Phenotypic characterization of macrolide-resistant strains was performed by double-disc diffusion testing. A multiplex PCR was used to identify theerm(B),erm(TR), andmef(A/E) genes, capsular genotypes, and alpha-like (Alp) protein genes from the GBS strains. Determination of MIC was carried out using the microdilution broth method. The Etest method was used for penicillin, azithromycin, clarithromycin, and erythromycin. Solithromycin had a MIC50of ≤0.008 μg/ml and a MIC90of 0.015 μg/ml against macrolide-susceptibleS. agalactiae. These MICs were lower than those displayed by penicillin (MIC50of 0.032 μg/ml and MIC90of 0.047 μg/ml), the antibiotic agent of choice for prophylaxis and treatment of GBS infections. Against macrolide-resistantS. agalactiae, solithromycin had a MIC50of 0.03 μg/ml and a MIC90of 0.125 μg/ml. Againsterm(B) strains, solithromycin had a MIC50of 0.03 μg/ml and a MIC90of 0.06 μg/ml, while againstmef(A) strains, it had a MIC50of 0.03 μg/ml and a MIC90of 0.125 μg/ml. Most erythromycin-resistant GBS strains were of serotype V (64.5%) and associated significantly withalp2-3. Moreover, a statistically significant association was observed between the constitutive macrolide-lincosamide-streptogramin B resistance (cMLSB) phenotype and theerm(B) gene-carrying strains, thealp2-3gene and the M phenotype, and themef(A/E) gene andepsilon. Overall, our results show that solithromycin had lower or similar MICs than penicillin and potent activity against macrolide-resistant strains independent of their genotype or phenotype, representing a valid therapeutic alternative where β-lactams cannot be used.


2012 ◽  
Vol 20 (2) ◽  
pp. 313-316 ◽  
Author(s):  
E. R. Martins ◽  
A. Andreu ◽  
J. Melo-Cristino ◽  
M. Ramirez

ABSTRACTAt least one pilus island, PI-1 (70%), PI-2a (79%), or PI-2b (21%), was found among 898Streptococcus agalactiae(group B streptococcus [GBS]) isolates recovered from humans, supporting the use of pilus proteins in vaccines. The stability and dominance of PI-1 and PI-2a in multiple serotypes and founder multilocus sequence types disseminated worldwide suggest it could be the PI combination present in ancestral GBS human pathogens.


2012 ◽  
Vol 194 (18) ◽  
pp. 5132-5133 ◽  
Author(s):  
Bei Wang ◽  
Jichang Jian ◽  
Yishan Lu ◽  
Shuanghu Cai ◽  
Yuchong Huang ◽  
...  

ABSTRACTStreptococcus agalactiae(group B streptococcus [GBS]) is a pathogen that causes meningoencephalitis in Nile tilapia (Oreochromis niloticus). Here, we reported the complete genome sequence ofS. agalactiaestrain ZQ0910, which was isolated from the GIFT strain of Nile tilapia in Guangdong, China.


2013 ◽  
Vol 20 (9) ◽  
pp. 1381-1387 ◽  
Author(s):  
Hidehito Matsui ◽  
Juri Kimura ◽  
Masato Higashide ◽  
Yoshio Takeuchi ◽  
Kuniyuki Okue ◽  
...  

ABSTRACTGroup BStreptococcus(GBS;Streptococcus agalactiae) is a leading cause of serious neonatal infections. The Centers for Disease Control and Prevention recommends GBS screening for all pregnant women during the 35th to 37th weeks of gestation. Although GBS screening has been performed mainly by the culture-based method, it takes several days to obtain a reliable result. In this study, we developed a rapid immunochromatographic test (ICT) for the detection of GBS-specific surface immunogenic protein in 15 min using an overnight enrichment culture. The ICT was prepared using two anti-Sip monoclonal antibodies. This ICT was able to detect recombinant Sip levels of 0.5 ng/ml, or about 106CFU/ml of GBS cells, in tests with 9 GBS strains of different serotypes. The cross-reactivity test using 26 species of microorganism showed no detectable false-positive result. Reactivity of the ICT with 229 GBS strains showed one false-negative result that was attributable to the production of truncated Sip. Among 260 enrichment cultures of vaginal swabs, 17 produced red to orange pigments in Granada medium, and they were all GBS and Sip positive. Among 219 pigment-negative cultures, 12 were GBS positive and 10 were Sip positive. Two Sip-negative cultures contained GBS cells below the limit of detection by the ICT. Among 207 GBS-negative cultures, only one was Sip positive, which was attributable to GBS cell debris. Thus, the sensitivity and specificity of the ICT appeared to be 93.1% and 99.6%, respectively. The newly developed ICT is readily applicable to clinical use in the detection of GBS.


2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S140-S140
Author(s):  
F Rajack ◽  
A Afsari ◽  
A M Ramadan ◽  
T J Naab

Abstract Introduction/Objective Streptococcus agalactiae, Group B Streptococcus (GBS), is a major cause of neonatal sepsis and infections in pregnant women. However, incidence of invasive GBS infections has more than doubled in the last two decades with highest risk in adults 65 years or older. Other risk factors are diabetes, malignancy, and immunocompromised state. Bacteremia and skin soft tissue infections are the most common invasive infections in nonpregnant adults. Rarely GBS infection has a fulminating pyrogenic exotoxin-mediated course characterized by acute onset, multiorgan failure, shock, and sometimes death, referred to as toxic shock-like syndrome. Methods A 77-year-old hypertensive female with uncontrolled type 2 diabetes mellitus and a history of bilateral foot ulcers presented to the hospital in probable septic shock. Clinical diagnosis of necrotizing fasciitis was made and she underwent bilateral lower limb amputations. Results Grossly soft tissue appeared gray. Microscopically fascia was necrotic without neutrophils present and Gram stain revealed sheets of Gram positive cocci. These findings reflected histopathologic Stage III necrotizing fasciitis, which is associated with 47% mortality. Autopsy showed a similar histology of Stage III necrotizing fasciitis involving the surgical stump. Erythema and desquamation of the upper limbs bilaterally and multi-organ failure met the clinical picture of Streptococcal Toxic Shock Syndrome (STSS) and fulfilled the criteria for TSS due to Group A Streptococcus (GAS), defined by The Working Group on Severe Streptococcal Infections. Conclusion Group B Streptococcal Toxic Shock-Like Syndrome may have a similar outcome to STSS caused by GAS and other pathogens and, in limited studies, mortality has been 30% or greater.


2017 ◽  
Vol 55 (7) ◽  
pp. 2137-2142 ◽  
Author(s):  
Deirdre L. Church ◽  
Heather Baxter ◽  
Tracie Lloyd ◽  
Oscar Larios ◽  
Daniel B. Gregson

ABSTRACTLife-threatening infection in neonates due to group BStreptococcus(GBS) is preventable by screening of near-term pregnant women and treatment at delivery. A total of 295 vaginal-rectal swabs were collected from women attending antepartum clinics in Calgary, Alberta, Canada. GBS colonization was detected by the standard culture method (Strep B Carrot Broth subcultured to blood agar with a neomycin disk) and compared to recovery with Strep Group B Broth (Dalynn Biologicals) subcultured to StrepBSelectchromogenic medium (CM; Bio-Rad Laboratories) and the Fast-Track Diagnostics GBS real-time PCR (quantitative PCR [qPCR]) assay (Phoenix Airmid Biomedical Corp.) performed with broth-enriched samples and the Abbottm2000sp/m2000rt system. A total of 62/295 (21%) women were colonized with GBS; 58 (19.7%) cases were detected by standard culture, while CM and qPCR each found 61 (20.7%) cases. The qPCR and CM were similar in performance, with sensitivities, specificities, and positive and negative predictive values of 98.4 and 98.4%, 99.6 and 99.6%, 98.4 and 98.4%, and 99.6 and 99.6%, respectively, compared to routine culture. Both qPCR and CM would allow more rapid reporting of routine GBS screening results than standard culture. Although the cost per test was similar for standard culture and CM, the routine use of qPCR would cost approximately four times as much as culture-based detection. Laboratories worldwide should consider implementing one of the newer methods for primary GBS testing, depending on the cost limitations of different health care jurisdictions.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Ryan S. Doster ◽  
Jessica A. Sutton ◽  
Lisa M. Rogers ◽  
David M. Aronoff ◽  
Jennifer A. Gaddy

ABSTRACT Streptococcus agalactiae, or group B Streptococcus (GBS), is a common perinatal pathogen. GBS colonization of the vaginal mucosa during pregnancy is a risk factor for invasive infection of the fetal membranes (chorioamnionitis) and its consequences such as membrane rupture, preterm labor, stillbirth, and neonatal sepsis. Placental macrophages, or Hofbauer cells, are fetally derived macrophages present within placental and fetal membrane tissues that perform vital functions for fetal and placental development, including supporting angiogenesis, tissue remodeling, and regulation of maternal-fetal tolerance. Although placental macrophages as tissue-resident innate phagocytes are likely to engage invasive bacteria such as GBS, there is limited information regarding how these cells respond to bacterial infection. Here, we demonstrate in vitro that placental macrophages release macrophage extracellular traps (METs) in response to bacterial infection. Placental macrophage METs contain proteins, including histones, myeloperoxidase, and neutrophil elastase similar to neutrophil extracellular traps, and are capable of killing GBS cells. MET release from these cells occurs by a process that depends on the production of reactive oxygen species. Placental macrophage METs also contain matrix metalloproteases that are released in response to GBS and could contribute to fetal membrane weakening during infection. MET structures were identified within human fetal membrane tissues infected ex vivo, suggesting that placental macrophages release METs in response to bacterial infection during chorioamnionitis. IMPORTANCE Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a common pathogen during pregnancy where infection can result in chorioamnionitis, preterm premature rupture of membranes (PPROM), preterm labor, stillbirth, and neonatal sepsis. Mechanisms by which GBS infection results in adverse pregnancy outcomes are still incompletely understood. This study evaluated interactions between GBS and placental macrophages. The data demonstrate that in response to infection, placental macrophages release extracellular traps capable of killing GBS. Additionally, this work establishes that proteins associated with extracellular trap fibers include several matrix metalloproteinases that have been associated with chorioamnionitis. In the context of pregnancy, placental macrophage responses to bacterial infection might have beneficial and adverse consequences, including protective effects against bacterial invasion, but they may also release important mediators of membrane breakdown that could contribute to membrane rupture or preterm labor.


Sign in / Sign up

Export Citation Format

Share Document