scholarly journals A Monoclonal Antibody to Histoplasma capsulatum Alters the Intracellular Fate of the Fungus in Murine Macrophages

2008 ◽  
Vol 7 (7) ◽  
pp. 1109-1117 ◽  
Author(s):  
Li Shi ◽  
Priscila C. Albuquerque ◽  
Eszter Lazar-Molnar ◽  
Xintao Wang ◽  
Laura Santambrogio ◽  
...  

ABSTRACT Monoclonal antibodies (MAbs) to a cell surface histone on Histoplasma capsulatum modify murine infection and decrease the growth of H. capsulatum within macrophages. Without the MAbs, H. capsulatum survives within macrophages by modifying the intraphagosomal environment. In the present study, we aimed to analyze the affects of a MAb on macrophage phagosomes. Using transmission electron and fluorescence microscopy, we showed that phagosome activation and maturation are significantly greater when H. capsulatum yeast are opsonized with MAb. The MAb reduced the ability of the organism to regulate the phagosomal pH. Additionally, increased antigen processing and reduced negative costimulation occur in macrophages that phagocytose yeast cells opsonized with MAb, resulting in more-efficient T-cell activation. The MAb alters the intracellular fate of H. capsulatum by affecting the ability of the fungus to regulate the milieu of the phagosome.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sizhe Liu ◽  
Vasiliy Galat ◽  
Yekaterina Galat4 ◽  
Yoo Kyung Annie Lee ◽  
Derek Wainwright ◽  
...  

AbstractNatural killer (NK) cell is a specialized immune effector cell type that plays a critical role in immune activation against abnormal cells. Different from events required for T cell activation, NK cell activation is governed by the interaction of NK receptors with target cells, independent of antigen processing and presentation. Due to relatively unsophisticated cues for activation, NK cell has gained significant attention in the field of cancer immunotherapy. Many efforts are emerging for developing and engineering NK cell-based cancer immunotherapy. In this review, we provide our current understandings of NK cell biology, ongoing pre-clinical and clinical development of NK cell-based therapies and discuss the progress, challenges, and future perspectives.


1982 ◽  
Vol 399 (1 Immunoglobuli) ◽  
pp. 227-237
Author(s):  
Denis R. Burger ◽  
David Regan ◽  
Karen Williams ◽  
Gerrie Leslie

2013 ◽  
Vol 191 (8) ◽  
pp. 4174-4183 ◽  
Author(s):  
Li-Zhen He ◽  
Naseem Prostak ◽  
Lawrence J. Thomas ◽  
Laura Vitale ◽  
Jeffrey Weidlick ◽  
...  

1995 ◽  
Vol 182 (1) ◽  
pp. 5-13 ◽  
Author(s):  
P Stumbles ◽  
D Mason

In vitro experiments using purified rat CD4+ T cells in primary and secondary mixed leukocyte cultures (MLC) have been carried out to explore the mechanism of inhibition of cell-mediated autoimmune disease in the rat by a nondepleting monoclonal antibody (mAb) to CD4. Previous work has shown that W3/25, a mouse anti-rat CD4 mAb of immunoglobulin G1 isotype, completely prevents the development of the paralysis associated with experimental allergic encephalomyelitis (EAE) in Lewis rats, but does so without eliminating the encephalitogenic T cells. The in vitro experiments described in this study have shown that when CD4+ T cells were activated in the presence of the anti-CD4 mAb in a primary MLC, the synthesis of interferon (IFN) gamma, but not interleukin (IL) 2, was completely inhibited. After secondary stimulation, now in the absence of the mAb, the synthesis of IL-4 and IL-13 mRNA was greatly enhanced compared with that observed from CD4+ T cells derived from primary cultures in which the mAb was omitted. As IL-4 and IL-13 are known to antagonize cell-mediated immune reactions, and as EAE is cell-mediated disease, the data suggest that the W3/25 mAb controls EAE by modifying the cytokine repertoire of T cells that respond to the encephalitogen. The capacity for the mAb to suppress IFN-gamma synthesis provides, in part, an explanation for this change in cytokine production. These findings are discussed in terms of what is known of the factors that determine which cytokine genes are expressed on T cell activation. Possible implications for the evolution of T cell responses in human immunodeficiency virus infection are also discussed.


1993 ◽  
Vol 150 (2) ◽  
pp. 235-246 ◽  
Author(s):  
Karen F. Kozarsky ◽  
Carlene Tsai ◽  
Cynthia M. Bott ◽  
Gopal Allada ◽  
Lan Lan Li ◽  
...  

1991 ◽  
Vol 132 (2) ◽  
pp. 366-376 ◽  
Author(s):  
Susan Levine ◽  
Chen Yu Xian ◽  
Bede Agocha ◽  
Janet Allopenna ◽  
Karl Welte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document