scholarly journals Selection and Characterization of RNA Interference-Deficient Trypanosomes Impaired in Target mRNA Degradation

2004 ◽  
Vol 3 (6) ◽  
pp. 1445-1453 ◽  
Author(s):  
Huafang Shi ◽  
Nathalie Chamond ◽  
Christian Tschudi ◽  
Elisabetta Ullu

ABSTRACT Genetic analysis of the RNA interference (RNAi) pathway in Trypanosoma brucei has so far revealed one essential component, namely, TbAGO1, encoding a member of the Argonaute protein family. To gain further insight into the RNAi mechanism and its biological significance, we selected RNAi-deficient trypanosomes by using repeated cycles of electroporation with α-tubulin double-stranded RNA, a treatment that blocks cytokinesis in wild-type cells. Two independent clones, termed RiD-1 (for RNAi-deficient clone 1) and RiD-2, were characterized. At the cellular level, only RiD-1 trypanosomes showed a significant increase in doubling time with the concomitant accumulation of cells defective in the completion of cytokinesis. At the RNA level, both clones accumulated wild-type amounts of small interfering RNAs and displayed elevated levels of retroposon transcripts, the hallmark of RNAi deficiency in T. brucei. Importantly, both RiD-1 and RiD-2 clones were defective in the degradation of target mRNA, suggesting an impairment of the activity of AGO1, the putative RNAi endonuclease. Since in RiD cells the AGO1 gene was not mutated and was expressed at wild-type levels, we propose that in trypanosomes the cleavage of mRNA by AGO1 is regulated by the interaction with another factor(s).

Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 721-731 ◽  
Author(s):  
Teresa D Shippy ◽  
Jianhua Guo ◽  
Susan J Brown ◽  
Richard W Beeman ◽  
Robin E Denell

Abstract The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.


2017 ◽  
Author(s):  
Fergal M. Waldron ◽  
Graham N. Stone ◽  
Darren J. Obbard

AbstractRNA interference (RNAi)-related pathways target viruses and transposable element (TE) transcripts in plants, fungi, and ecdysozoans (nematodes and arthropods), giving protection against infection and transmission. In each case, this produces abundant TE and virus-derived 20-30nt small RNAs, which provide a characteristic signature of RNAi-mediated defence. The broad phylogenetic distribution of the Argonaute and Dicer-family genes that mediate these pathways suggests that defensive RNAi is ancient and probably shared by most animal (metazoan) phyla. Indeed, while vertebrates had been thought an exception, it has recently been argued that mammals also possess an antiviral RNAi pathway, although its immunological relevance is currently uncertain and the viral small RNAs are not detectably under natural conditions. Here we use a metagenomic approach to test for the presence of virus-derived small RNAs in five divergent animal phyla (Porifera, Cnidaria, Echinodermata, Mollusca, and Annelida), and in a brown alga—which represents an independent origin of multicellularity from plants, fungi, and animals. We use metagenomic RNA sequencing to identify around 80 virus-like contigs in these lineages, and small RNA sequencing to identify small RNAs derived from those viruses. Contrary to our expectations, we were unable to identify canonical (i.e. Drosophila-, nematode- or plant-like) viral small RNAs in any of these organisms, despite the widespread presence of abundant micro-RNAs, and transposon-derived somatic Piwi-interacting piRNAs in the animals. Instead, we identified a distinctive group of virus-derived small RNAs in the mollusc, which have a piRNA-like length distribution but lack key signatures of piRNA biogenesis, and a group of 21U virus-derived small RNAs in the brown alga. We also identified primary piRNAs derived from putatively endogenous copies of DNA viruses in the cnidarian and the echinoderm, and an endogenous RNA virus in the mollusc. The absence of canonical virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response. Alternatively, these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, which is not detectable through simple metagenomic sequencing of wild-type individuals. In either case, our findings suggest that the current antiviral RNAi responses of arthropods and nematodes are highly diverged from the ancestral metazoan state, and that antiviral RNAi may even have evolved independently on multiple occasions.Author summaryThe presence of abundant virus-derived small RNAs in infected plants, fungi, nematodes, and arthropods suggests that Dicer-dependent antiviral RNAi is an ancient and conserved defence. Using metagenomic sequencing from wild-caught organisms we show that antiviral RNAi is highly variable across animals. We identify a distinctive group of virus-derived small RNAs in a mollusc, which have a piRNA-like length distribution but lack key signatures of piRNA biogenesis. We also report a group of 21U virus-derived small RNAs in a brown alga, which represents an origin of multicellularity separate from that of plants, fungi, and animals. The absence of virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response or that these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, which is not detectable through simple metagenomic sequencing of wild-type individuals. In addition, we report abundant somatic piRNAs across anciently divergent animals suggesting that this is the ancestral state in Bilateria. Our study challenges the widely-held assumption that most invertebrates possess an antiviral RNAi pathway likely similar to that seen in Drosophila, other arthropods, and nematodes.


2007 ◽  
Vol 27 (11) ◽  
pp. 3995-4005 ◽  
Author(s):  
Swati Choudhary ◽  
Heng-Chi Lee ◽  
Mekhala Maiti ◽  
Qun He ◽  
Ping Cheng ◽  
...  

ABSTRACT When recognized by the RNA interference (RNAi) pathway, double-stranded RNA (dsRNA) produced in eukaryotic cells results in posttranscriptional gene silencing. In addition, dsRNA can trigger the interferon response as part of the immune response in vertebrates. In this study, we show that dsRNA, but not short interfering RNA (siRNA), induces the expression of qde-2 (an Argonaute gene) and dcl-2 (a Dicer gene), two central components of the RNAi pathway in the filamentous fungus Neurospora crassa. The induction of QDE-2 by dsRNA is required for normal gene silencing, indicating that this is a regulatory mechanism that allows the optimal function of the RNAi pathway. In addition, we demonstrate that Dicer proteins (DCLs) regulate QDE-2 posttranscriptionally, suggesting a role for DCLs or siRNA in QDE-2 accumulation. Finally, a genome-wide search revealed that additional RNAi components and homologs of antiviral and interferon-stimulated genes are also dsRNA-activated genes in Neurospora. Together, our results suggest that the activation of the RNAi components is part of a broad ancient host defense response against viral and transposon infections.


2020 ◽  
Author(s):  
Brooke E. Montgomery ◽  
Tarah Vijayasarathy ◽  
Taylor N. Marks ◽  
Kailee J. Reed ◽  
Taiowa A. Montgomery

ABSTRACTPiwi-interacting RNAs (piRNAs) are a largely germline-specific class of small RNAs found in animals. Although piRNAs are best known for silencing transposons, they regulate many different biological processes. Here we identify a role for piRNAs in preventing runaway amplification of small interfering RNAs (siRNAs) from certain genes, including ribosomal RNAs (rRNAs) and histone mRNAs. In Caenorhabditis elegans, rRNAs and some histone mRNAs are heavily targeted by piRNAs, which facilitates their entry into an endogenous RNA interference (RNAi) pathway involving a class of siRNAs called 22G-RNAs. Under normal conditions, rRNAs and histone mRNAs produce relatively low levels of 22G-RNAs. But if piRNAs are lost, 22G-RNA production is highly elevated. We show that 22G-RNAs produced downstream of piRNAs likely function in a feed-forward amplification circuit. Thus, our results suggest that piRNAs facilitate low-level 22G-RNA production while simultaneously obstructing the 22G-RNA machinery to prevent runaway amplification from certain RNAs. Histone mRNAs and rRNAs are unique from other cellular RNAs in lacking polyA tails, which may promote feed-forward amplification of 22G-RNAs. In support of this, we show that the subset of histone mRNAs that contain polyA tails are largely resistant to silencing in piRNA mutants.


Author(s):  
Yanxin Ren ◽  
Xueyu Li ◽  
Zhonghui Tian ◽  
Yan Xu ◽  
Ruilin Zhang ◽  
...  

The zebrafish (Danio rerio) possesses evolutionarily conserved innate and adaptive immunity as a mammal and has recently become a popular vertebrate model to exploit infection and immunity. Antiviral RNA interference (RNAi) has been illuminated in various model organisms, including Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans and mice. However, to date, there is no report on the antiviral RNAi pathway of zebrafish. Here, we have evaluated the possible use of zebrafish to study antiviral RNAi with Sindbis virus (SINV), vesicular stomatitis virus (VSV) and Nodamura virus (NoV). We find that SINVs and NoVs induce the production of virus-derived small interfering RNAs (vsiRNAs), the hallmark of antiviral RNAi, with a preference for a length of 22 nucleotides, after infection of larval zebrafish. Meanwhile, the suppressor of RNAi (VSR) protein, NoV B2, may affect the accumulation of the NoV in zebrafish. Furthermore, taking advantage of the fact that zebrafish argonaute-2 (Ago2) protein is naturally deficient in cleavage compared with that of mammals, we provide evidence that the slicing activity of human Ago2 can virtually inhibit the accumulation of RNA virus after being ectopically expressed in larval zebrafish. Thus, zebrafish may be a unique model organism to study the antiviral RNAi pathway.


2006 ◽  
Vol 189 (2) ◽  
pp. 313-324 ◽  
Author(s):  
Maja Baumgärtner ◽  
Uwe Kärst ◽  
Birgit Gerstel ◽  
Martin Loessner ◽  
Jürgen Wehland ◽  
...  

ABSTRACT Lipoprotein anchoring in bacteria is mediated by the prolipoprotein diacylglyceryl transferase (Lgt), which catalyzes the transfer of a diacylglyceryl moiety to the prospective N-terminal cysteine of the mature lipoprotein. Deletion of the lgt gene in the gram-positive pathogen Listeria monocytogenes (i) impairs intracellular growth of the bacterium in different eukaryotic cell lines and (ii) leads to increased release of lipoproteins into the culture supernatant. Comparative extracellular proteome analyses of the EGDe wild-type strain and the Δlgt mutant provided systematic insight into the relative expression of lipoproteins. Twenty-six of the 68 predicted lipoproteins were specifically released into the extracellular proteome of the Δlgt strain, and this proved that deletion of lgt is an excellent approach for experimental verification of listerial lipoproteins. Consequently, we generated Δlgt ΔprfA double mutants to detect lipoproteins belonging to the main virulence regulon that is controlled by PrfA. Overall, we identified three lipoproteins whose extracellular levels are regulated and one lipoprotein that is posttranslationally modified depending on PrfA. It is noteworthy that in contrast to previous studies of Escherichia coli, we unambiguously demonstrated that lipidation by Lgt is not a prerequisite for activity of the lipoprotein-specific signal peptidase II (Lsp) in Listeria.


2006 ◽  
Vol 80 (14) ◽  
pp. 6822-6833 ◽  
Author(s):  
Beau J. Fenner ◽  
Winnie Goh ◽  
Jimmy Kwang

ABSTRACT Betanodavirus B2 belongs to a group of functionally related proteins from the sense-strand RNA virus family Nodaviridae that suppress cellular RNA interference. The B2 proteins of insect alphanodaviruses block RNA interference by binding to double-stranded RNA (dsRNA), thus preventing Dicer-mediated cleavage and the subsequent generation of short interfering RNAs. We show here that the fish betanodavirus B2 protein also binds dsRNA. Binding is sequence independent, and maximal binding occurs with dsRNA substrates greater than 20 bp in length. The binding of B2 to long dsRNA is sufficient to completely block Dicer cleavage of dsRNA in vitro. Protein-protein interaction studies indicated that B2 interacts with itself and with other dsRNA binding proteins, the interaction occurring through binding to shared dsRNA substrates. Induction of the dsRNA-dependent interferon response was not antagonized by B2, as the interferon-responsive Mx gene of permissive fish cells was induced by wild-type viral RNA1 but not by a B2 mutant. The induction of Mx instead relied solely on viral RNA1 accumulation, which is impaired in the B2 mutant. Hyperediting of virus dsRNA and site-specific editing of 5-HT2C mRNA were both antagonized by B2. RNA editing was not, however, observed in transfected wild-type or B2 mutant RNA1, suggesting that this pathway does not contribute to the RNA1 accumulation defect of the B2 mutant. We thus conclude that betanodavirus B2 is a dsRNA binding protein that sequesters and protects both long and short dsRNAs to protect betanodavirus from cellular RNA interference.


2004 ◽  
Vol 33 (3) ◽  
pp. 545-557 ◽  
Author(s):  
I Bantounas ◽  
L A Phylactou ◽  
J B Uney

In the past 2 years, extraordinary developments in RNA interference (RNAi)-based methodologies have seen small interfering RNAs (siRNA) become the method of choice for researchers wishing to target specific genes for silencing. In this review, an historic overview of the biochemistry of the RNAi pathway is described together with the latest advances in the RNAi field. Particular emphasis is given to strategies by which siRNAs are used to study mammalian gene function. In this regard, the use of plasmid-based and viral vector-based systems to mediate long-term RNAi in vitro and in vivo are described. However, recent work has shown that non-specific silencing effects and activation of the interferon response may occur following the use of some siRNA and delivery vector combinations. Future goals must therefore be to understand the mechanisms by which siRNA delivery leads to unwanted gene silencing effects in cells and, in this way, RNAi technology can reach its tremendous potential as a scientific tool and ultimately be used for therapeutic purposes.


2012 ◽  
Vol 86 (16) ◽  
pp. 8884-8889 ◽  
Author(s):  
Erin N. Hodges ◽  
Bianca S. Heinrich ◽  
John H. Connor

Vesicular stomatitis virus (VSV) is a prototype nonsegmented, negative-sense virus used to examine viral functions of a broad family of viruses, including human pathogens. Here we demonstrate that S2VSV, an isolate with a small plaque phenotype compared to other Indiana strain viruses, has a transcription defect resulting in an altered pattern and rapid decline of transcription. The S2VSV transcription gradient is dominant over the wild-type transcription in a coinfection. This is the first characterization of an altered gradient of transcription not dependent on RNA template sequence or host response and may provide insight into new approaches to viral attenuation.


Sign in / Sign up

Export Citation Format

Share Document