scholarly journals Draft Genome Sequence of Chryseobacterium sp. JV274 Isolated from Maize Rhizosphere

2017 ◽  
Vol 5 (15) ◽  
Author(s):  
Jordan Vacheron ◽  
Audrey Dubost ◽  
David Chapulliot ◽  
Claire Prigent-Combaret ◽  
Daniel Muller

ABSTRACT We report the draft genome sequence of Chryseobacterium sp. JV274. This strain was isolated from the rhizosphere of maize during a greenhouse experiment. JV274 harbors genes involved in flexirubin production (darA and darB genes), bacterial competition (type VI secretion system), and gliding (bacterial motility; type IX secretion system).

2021 ◽  
Vol 10 (36) ◽  
Author(s):  
Margaret E. Rosario ◽  
Jacqueline Camm ◽  
Damian Cavanagh ◽  
David C. Rowley ◽  
David R. Nelson

We report the draft genome sequence for Pseudoalteromonas sp. strain JC3, an isolate obtained from an aquaculture facility for whiteleg shrimp ( Litopenaeus vannamei ). The JC3 genome suggests multiple mechanisms for microbial interactions, including a type VI secretion system and potential for antibiotic production.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
William P. J. Smith ◽  
Maj Brodmann ◽  
Daniel Unterweger ◽  
Yohan Davit ◽  
Laurie E. Comstock ◽  
...  

Abstract Tit-for-tat is a familiar principle from animal behavior: individuals respond in kind to being helped or harmed by others. Remarkably some bacteria appear to display tit-for-tat behavior, but how this evolved is not understood. Here we combine evolutionary game theory with agent-based modelling of bacterial tit-for-tat, whereby cells stab rivals with poisoned needles (the type VI secretion system) after being stabbed themselves. Our modelling shows tit-for-tat retaliation is a surprisingly poor evolutionary strategy, because tit-for-tat cells lack the first-strike advantage of preemptive attackers. However, if cells retaliate strongly and fire back multiple times, we find that reciprocation is highly effective. We test our predictions by competing Pseudomonas aeruginosa (a tit-for-tat species) with Vibrio cholerae (random-firing), revealing that P. aeruginosa does indeed fire multiple times per incoming attack. Our work suggests bacterial competition has led to a particular form of reciprocation, where the principle is that of strong retaliation, or ‘tits-for-tat’.


2018 ◽  
Vol 7 (22) ◽  
Author(s):  
Luana Bresciani ◽  
Leandro N. Lemos ◽  
Nina Wale ◽  
Jonathan Y. Lin ◽  
Alexander T. Strauss ◽  
...  

We report here the near-complete genome sequence of “Candidatus Spirobacillus cienkowskii,” a spiral-shaped, red-pigmented uncultivated bacterial pathogen of Daphnia spp. The genome is 2.74 Mbp in size, has a GC content of 32.1%, and contains genes associated with bacterial motility and the production of carotenoids, which could explain the distinctive red color of hosts infected with this pathogen.


2019 ◽  
Vol 8 (7) ◽  
Author(s):  
Helena L. Spiewak ◽  
Sravanthi Shastri ◽  
Lili Zhang ◽  
Stephan Schwager ◽  
Leo Eberl ◽  
...  

2014 ◽  
Vol 70 (4) ◽  
pp. 1094-1103 ◽  
Author(s):  
Xuan Yang ◽  
Min Xu ◽  
Yanying Wang ◽  
Pengyan Xia ◽  
Shuo Wang ◽  
...  

VgrG proteins form the spike of the type VI secretion system (T6SS) syringe-like complex. VgrG3 ofVibrio choleraedegrades the peptidoglycan cell wall of rival bacteriaviaits C-terminal region (VgrG3C) through its muramidase activity. VgrG3C consists of a peptidoglycan-binding domain (VgrG3CPGB) and a putative catalytic domain (VgrG3CCD), and its activity can be inhibited by its immunity protein partner TsiV3. Here, the crystal structure ofV. choleraeVgrG3CCDin complex with TsiV3 is presented at 2.3 Å resolution. VgrG3CCDadopts a chitosanase fold. A dimer of TsiV3 is bound in the deep active-site groove of VgrG3CCD, occluding substrate binding and distorting the conformation of the catalytic dyad. Gln91 and Arg92 of TsiV3 are located in the centre of the interface and are important for recognition of VgrG3C. Mutation of these residues destabilized the complex and abolished the inhibitory activity of TsiV3 against VgrG3C toxicity in cells. Disruption of TsiV3 dimerization also weakened the complex and impaired the inhibitory activity. These structural, biochemical and functional data define the molecular mechanism underlying the self-protection ofV. choleraeand expand the understanding of the role of T6SS in bacterial competition.


PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e89411 ◽  
Author(s):  
Victorien Decoin ◽  
Corinne Barbey ◽  
Dorian Bergeau ◽  
Xavier Latour ◽  
Marc G. J. Feuilloley ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59388 ◽  
Author(s):  
Michael D. Carruthers ◽  
Paul A. Nicholson ◽  
Erin N. Tracy ◽  
Robert S. Munson

2018 ◽  
Vol 115 (49) ◽  
pp. 12519-12524 ◽  
Author(s):  
Panayiota Pissaridou ◽  
Luke P. Allsopp ◽  
Sarah Wettstadt ◽  
Sophie A. Howard ◽  
Despoina A. I. Mavridou ◽  
...  

The type VI secretion system (T6SS) is a supramolecular complex involved in the delivery of potent toxins during bacterial competition. Pseudomonas aeruginosa possesses three T6SS gene clusters and several hcp and vgrG gene islands, the latter encoding the spike at the T6SS tip. The vgrG1b cluster encompasses seven genes whose organization and sequences are highly conserved in P. aeruginosa genomes, except for two genes that we called tse7 and tsi7. We show that Tse7 is a Tox-GHH2 domain nuclease which is distinct from other T6SS nucleases identified thus far. Expression of this toxin induces the SOS response, causes growth arrest and ultimately results in DNA degradation. The cytotoxic domain of Tse7 lies at its C terminus, while the N terminus is a predicted PAAR domain. We find that Tse7 sits on the tip of the VgrG1b spike and that specific residues at the PAAR–VgrG1b interface are essential for VgrG1b-dependent delivery of Tse7 into bacterial prey. We also show that the delivery of Tse7 is dependent on the H1-T6SS cluster, and injection of the nuclease into bacterial competitors is deployed for interbacterial competition. Tsi7, the cognate immunity protein, protects the producer from the deleterious effect of Tse7 through a direct protein–protein interaction so specific that toxin/immunity pairs are effective only if they originate from the same P. aeruginosa isolate. Overall, our study highlights the diversity of T6SS effectors, the exquisite fitting of toxins on the tip of the T6SS, and the specificity in Tsi7-dependent protection, suggesting a role in interstrain competition.


Sign in / Sign up

Export Citation Format

Share Document