scholarly journals Draft Whole-Genome Sequences of 11 Bacillus cereus Food Isolates: TABLE 1 

2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Hasmik Hayrapetyan ◽  
Jos Boekhorst ◽  
Anne de Jong ◽  
Oscar P. Kuipers ◽  
Masja N. Nierop Groot ◽  
...  

Bacillus cereus is a foodborne pathogen causing emetic and diarrheal-type syndromes. Here, we report the whole-genome sequences of 11 B. cereus food isolates.

2021 ◽  
Vol 20 ◽  
pp. 100649
Author(s):  
Xiaoran Zhao ◽  
Ruijun Li ◽  
Huifeng Dang ◽  
Luo Wang ◽  
Songzhe Fu ◽  
...  

2018 ◽  
Vol 7 (13) ◽  
Author(s):  
Yanhong Liu ◽  
Aixia Xu ◽  
Pina M. Fratamico ◽  
Christopher H. Sommers ◽  
Luca Rotundo ◽  
...  

Listeria monocytogenes is an important foodborne pathogen that causes listeriosis. Here, we report the draft genome sequences of seven L. monocytogenes strains isolated from food, environmental, and clinical sources.


2018 ◽  
Vol 6 (19) ◽  
Author(s):  
Pooja N. Patel ◽  
Rebecca L. Lindsey ◽  
Lisley Garcia-Toledo ◽  
Lori A. Rowe ◽  
Dhwani Batra ◽  
...  

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) is an enteric foodborne pathogen that can cause mild to severe illness. Here, we report the availability of high-quality whole-genome sequences for 77 STEC strains generated using the PacBio sequencing platform.


Author(s):  
Laura M. Carroll ◽  
Martin Wiedmann

AbstractCereulide-producing members of Bacillus cereus sensu lato (B. cereus s.l.) Group III, also known as “emetic B. cereus”, possess cereulide synthetase, a plasmid-encoded, non-ribosomal peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-producing strains pose to public health, the level of genomic diversity encompassed by “emetic B. cereus” has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic approach to characterize Group III B. cereus s.l. genomes which possess ces (ces-positive) alongside their closely related ces-negative counterparts to (i) assess the genomic diversity encompassed by “emetic B. cereus”, and (ii) identify potential ces loss and/or gain events within the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage often associated with emetic foodborne illness. Using all publicly available ces-positive Group III B. cereus s.l. genomes and the ces-negative genomes interspersed among them (n = 150), we show that “emetic B. cereus” is not clonal; rather, multiple lineages within Group III harbor cereulide-producing strains, all of which share a common ancestor incapable of producing cereulide (posterior probability [PP] 0.86-0.89). The ST 26 common ancestor was predicted to have emerged as ces-negative (PP 0.60-0.93) circa 1904 (95% highest posterior density [HPD] interval 1837.1-1957.8) and first acquired the ability to produce cereulide before 1931 (95% HPD 1893.2-1959.0). Three subsequent ces loss events within ST 26 were observed, including among isolates responsible for B. cereus s.l. toxicoinfection (i.e., “diarrheal” illness).Importance“B. cereus” is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., “emetic” syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., “diarrheal” syndrome). Here, we show that “emetic B. cereus” is not a clonal, homogenous unit that resulted from a single cereulide synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some Group III B. cereus s.l. populations to oscillate between diarrheal and emetic foodborne pathogen over the course of their evolutionary histories. We also highlight the care that must be taken when selecting a reference genome for whole-genome sequencing-based investigation of emetic B. cereus s.l. outbreaks, as some reference genome selections can lead to a confounding loss of resolution and potentially hinder epidemiological investigations.


2017 ◽  
Vol 5 (29) ◽  
Author(s):  
Chunye Lu ◽  
Olivera Marjanovic ◽  
Christina Morales ◽  
David Kiang

ABSTRACT Listeria monocytogenes is an important foodborne pathogen. Here, we present the annotated whole genome of Listeria monocytogenes strains F14M01297-C2 and F14M01297-C4, isolated from nectarines distributed by a packing facility in California during an investigation of listeriosis associated with stone fruit in 2014.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Akiko Okutani ◽  
Satoshi Inoue ◽  
Akira Noguchi ◽  
Yoshihiro Kaku ◽  
Shigeru Morikawa

Abstract Background The complete genome sequences of 44 Bacillus cereus group isolates collected from diverse sources in Japan were analyzed to determine their genetic backgrounds and diversity levels in Japan. Multilocus sequence typing (MLST) and core-genome single-nucleotide polymorphism (SNP) typing data from whole-genome sequences were analyzed to determine genetic diversity levels. Virulence-associated gene profiles were also used to evaluate the genetic backgrounds and relationships among the isolates. Results The 44 B. cereus group isolates, including soil- and animal-derived isolates and isolates recovered from hospitalized patients and food poisoning cases, were genotyped by MLST and core-genome SNP typing. Genetic variation among the isolates was identified by the MLST and core-genome SNP phylogeny comparison against reference strains from countries outside of Japan. Exploratory principal component analysis and nonmetric multidimensional scaling (NMDS) analyses were used to assess the genetic similarities among the isolates using gene presence and absence information and isolate origins as the metadata. A significant correlation was seen between the principal components and the presence of genes encoding hemolysin BL and emetic genetic determinants in B. cereus, and the capsule proteins in B. anthracis. NMDS showed that the cluster of soil isolates overlapped with the cluster comprising animal-derived and clinical isolates. Conclusions Molecular and epidemiological analyses of B. cereus group isolates in Japan suggest that the soil- and animal-derived bacteria from our study are not a significant risk to human health. However, because several of the clinical isolates share close genetic relationships with the environmental isolates, both molecular and epidemiological surveillance studies could be used effectively to estimate virulence in these important pathogens.


2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Rebecca L. Lindsey ◽  
Lori Rowe ◽  
Lisley Garcia-Toledo ◽  
Vladimir Loparev ◽  
Kristen Knipe ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen. We report here the high-quality draft whole-genome sequences of five STEC strains isolated from clinical cases in the United States. This report is for STEC of serotypes O55:H7, O79:H7, O91:H14, O153:H2, and O156:H25.


2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Julien Crovadore ◽  
Gautier Calmin ◽  
Jenna Tonacini ◽  
Romain Chablais ◽  
Bruno Schnyder ◽  
...  

We present here the whole shotgun genome sequences of seven strains of Bacillus cereus isolated from foodstuff samples or food poisoning incidents.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Antonina O. Krawczyk ◽  
Anne de Jong ◽  
Robyn T. Eijlander ◽  
Erwin M. Berendsen ◽  
Siger Holsappel ◽  
...  

Bacillus cereus can contaminate food and cause emetic and diarrheal foodborne illness. Here, we report whole-genome sequences of eight strains of B. cereus , isolated from different food sources.


Sign in / Sign up

Export Citation Format

Share Document