scholarly journals Whole-Genome Sequence of Chlamydia gallinacea Type Strain 08-1274/3

2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Martin Hölzer ◽  
Karine Laroucau ◽  
Heather Huot Creasy ◽  
Sandra Ott ◽  
Fabien Vorimore ◽  
...  

The recently introduced bacterial species Chlamydia gallinacea is known to occur in domestic poultry and other birds. Its potential as an avian pathogen and zoonotic agent is under investigation. The whole-genome sequence of its type strain, 08-1274/3, consists of a 1,059,583-bp chromosome with 914 protein-coding sequences (CDSs) and a plasmid (p1274) comprising 7,619 bp with 9 CDSs.

2017 ◽  
Vol 5 (43) ◽  
Author(s):  
Anke Treuner-Lange ◽  
Marc Bruckskotten ◽  
Oliver Rupp ◽  
Alexander Goesmann ◽  
Lotte Søgaard-Andersen

ABSTRACT Among myxobacteria, the genus Cystobacter is known not only for fruiting body formation but also for formation of secondary metabolites, such as cystobactamids and cystothiazols. Here, we present the complete genome sequence of the Cystobacter fuscus strain DSM 52655, which comprises 12,349,744 bp and 9,836 putative protein-coding sequences.


2017 ◽  
Vol 5 (7) ◽  
Author(s):  
Yuli Wei ◽  
Junwei Cao ◽  
Jiasong Fang ◽  
Chiaki Kato ◽  
Weicheng Cui

ABSTRACT Marinilactibacillus piezotolerans strain 15R is a facultatively anaerobic heterotrophic lactobacillus isolated from deep marine subsurface sediment nearly 2 km below the seafloor in the northwestern Pacific. We report here the first whole-genome sequence of strain 15R. The identified genome sequence has 2,767,908 bp, 35.4% G+C content, and predicted 2,552 candidate protein-coding sequences, with no identified plasmids.


2018 ◽  
Vol 7 (17) ◽  
Author(s):  
William G. Miller ◽  
Emma Yee

Arcobacter skirrowii is a species of veterinary importance, originally recovered from the feces, aborted fetuses, and preputial fluids of livestock. We present here the whole-genome sequence of the A. skirrowii type strain LMG 6621 (= 449/80T = CCUG 10374T), isolated in the United Kingdom from a lamb diarrheal fecal sample.


2020 ◽  
Vol 9 (39) ◽  
Author(s):  
Maria Grazia Cusi ◽  
David Pinzauti ◽  
Claudia Gandolfo ◽  
Gabriele Anichini ◽  
Gianni Pozzi ◽  
...  

ABSTRACT The complete genome sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolate Siena-1/2020 was obtained by Nanopore sequencing, combining the direct RNA sequencing and amplicon sequencing approaches. The isolate belongs to the B1.1 lineage, which is prevalent in Europe, and contains a mutation in the spike protein coding sequence leading to the D614G amino acid change.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Jhasketan Badhai ◽  
Kunwar Digvijay Narayan ◽  
William B. Whitman ◽  
Subrata K. Das

Gulbenkiania indica strain HT27 T was isolated from a sulfur spring. Here, we report the first representative draft genome sequence of a type strain of the genus Gulbenkiania . The estimated genome is 2.8 Mb, with 2,713 protein-coding sequences.


2019 ◽  
Vol 20 (S15) ◽  
Author(s):  
Jinhong Shi ◽  
Yan Yan ◽  
Matthew G. Links ◽  
Longhai Li ◽  
Jo-Anne R. Dillon ◽  
...  

Abstract Background Antimicrobial resistance (AMR) is a major threat to global public health because it makes standard treatments ineffective and contributes to the spread of infections. It is important to understand AMR’s biological mechanisms for the development of new drugs and more rapid and accurate clinical diagnostics. The increasing availability of whole-genome SNP (single nucleotide polymorphism) information, obtained from whole-genome sequence data, along with AMR profiles provides an opportunity to use feature selection in machine learning to find AMR-associated mutations. This work describes the use of a supervised feature selection approach using deep neural networks to detect AMR-associated genetic factors from whole-genome SNP data. Results The proposed method, DNP-AAP (deep neural pursuit – average activation potential), was tested on a Neisseria gonorrhoeae dataset with paired whole-genome sequence data and resistance profiles to five commonly used antibiotics including penicillin, tetracycline, azithromycin, ciprofloxacin, and cefixime. The results show that DNP-AAP can effectively identify known AMR-associated genes in N. gonorrhoeae, and also provide a list of candidate genomic features (SNPs) that might lead to the discovery of novel AMR determinants. Logistic regression classifiers were built with the identified SNPs and the prediction AUCs (area under the curve) for penicillin, tetracycline, azithromycin, ciprofloxacin, and cefixime were 0.974, 0.969, 0.949, 0.994, and 0.976, respectively. Conclusions DNP-AAP can effectively identify known AMR-associated genes in N. gonorrhoeae. It also provides a list of candidate genes and intergenic regions that might lead to novel AMR factor discovery. More generally, DNP-AAP can be applied to AMR analysis of any bacterial species with genomic variants and phenotype data. It can serve as a useful screening tool for microbiologists to generate genetic candidates for further lab experiments.


2017 ◽  
Vol 5 (46) ◽  
Author(s):  
Pushpa Lata ◽  
Subramaniam S. Govindarajan ◽  
Feng Qi ◽  
Jian-Liang Li ◽  
Santosh K. Maurya ◽  
...  

ABSTRACT Pantoea americana strain VS1, an extended-spectrum β-lactamase-producing epibiont, was isolated from Magnolia grandiflora in central Florida, USA. Here, we report the de novo whole-genome sequence of this strain, which consists of a total of 191 contigs spanning 5,412,831 bp, with a GC content of 57.3% and comprising 4,836 predicted coding sequences.


2017 ◽  
Vol 5 (48) ◽  
Author(s):  
Cynthia Maria Chibani ◽  
Anja Poehlein ◽  
Olivia Roth ◽  
Heiko Liesegang ◽  
Carolin Charlotte Wendling

ABSTRACT Here, we present the draft genome sequence of Vibrio splendidus type strain DSM 19640. V. splendidus is an abundant species among coastal vibrioplankton. The assembly resulted in a 5,729,362-bp draft genome with 5,032 protein-coding sequences, 6 rRNAs, and 117 tRNAs.


Sign in / Sign up

Export Citation Format

Share Document