scholarly journals Complete Genome Sequence of Pseudomonas aeruginosa FA-HZ1, an Efficient Dibenzofuran-Degrading Bacterium

2017 ◽  
Vol 5 (7) ◽  
Author(s):  
Fawad Ali ◽  
Haiyang Hu ◽  
Ping Xu ◽  
Hongzhi Tang

ABSTRACT Pseudomonas sp. FA-HZ1, an efficient dibenzofuran-degrading bacterium, was isolated from landfill leachate. Here, we present the complete genome sequence of strain FA-HZ1, which contains only one circular chromosome. The complete genome sequence will be essential for revealing the molecular mechanisms of dibenzofuran degradation.

2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Kentaro Miyazaki ◽  
Hikaru Suenaga ◽  
Mamoru Oshiki ◽  
Shuichi Kawano ◽  
Toshikazu Fukushima

ABSTRACT A thiocyanate-degrading bacterium, Thiohalobacter sp. strain COW1, was isolated from activated sludge treating coke oven wastewater, and the complete genome sequence was determined. COW1 contained a single circular chromosome (3.23 Mb; G+C content, 63.4%) in which 2,788 protein-coding genes, 39 tRNA genes, and 3 rRNA genes were identified.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Yanina Delegan ◽  
Leonid Valentovich ◽  
Anna Vetrova ◽  
Ekaterina Frantsuzova ◽  
Yulia Kocharovskaya

Gordonia sp. strain 135 is a promising dibenzothiophene-desulfurizing and hydrocarbon-degrading bacterium. It can utilize dibenzothiophene as the sole sulfur source. The genome of strain 135 was completely sequenced; it consists of a 5,039,827-bp circular chromosome and a 164,963-bp circular plasmid.


2019 ◽  
Vol 8 (48) ◽  
Author(s):  
Yanina Delegan ◽  
Leonid Valentovich ◽  
Kirill Petrikov ◽  
Anna Vetrova ◽  
Artur Akhremchuk ◽  
...  

Rhodococcus erythropolis X5 is a psychrotrophic (cold-adapted) hydrocarbon-degrading bacterium, as it showed effective n-alkane destruction at low positive temperatures. Here, the genome of strain X5 was completely sequenced; it consists of a 6,472,161-bp circular chromosome (62.25% GC content) and a 526,979-bp linear plasmid, pRhX5-526k (62.37% GC content).


2017 ◽  
Vol 5 (7) ◽  
Author(s):  
Hikaru Suenaga ◽  
Atsushi Yamazoe ◽  
Akira Hosoyama ◽  
Nobutada Kimura ◽  
Jun Hirose ◽  
...  

ABSTRACT Pseudomonas putida KF715 (NBRC 110667) utilizes biphenyl as a sole source of carbon and degrades polychlorinated biphenyls (PCBs). Here, we report a complete genome sequence of the KF715 strain, which comprises a circular chromosome and four plasmids. Biphenyl catabolic genes were located on the largest plasmid, pKF715A.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Suganniiya K. Ravintheran ◽  
Sumitra Sivaprakasam ◽  
Stella Loke ◽  
Su Yin Lee ◽  
Ravichandran Manickam ◽  
...  

AbstractComplete genomes of xenobiotic-degrading microorganisms provide valuable resources for researchers to understand molecular mechanisms involved in bioremediation. Despite the well-known ability of Sphingomonas paucimobilis to degrade persistent xenobiotic compounds, a complete genome sequencing is lacking for this organism. In line with this, we report the first complete genome sequence of Sphingomonas paucimobilis (strain AIMST S2), an organophosphate and hydrocarbon-degrading bacterium isolated from oil-polluted soil at Kedah, Malaysia. The genome was derived from a hybrid assembly of short and long reads generated by Illumina HiSeq and MinION, respectively. The assembly resulted in a single contig of 4,005,505 bases which consisted of 3,612 CDS and 56 tRNAs. An array of genes involved in xenobiotic degradation and plant-growth promoters were identified, suggesting its’ potential role as an effective microorganism in bioremediation and agriculture. Having reported the first complete genome of the species, this study will serve as a stepping stone for comparative genome analysis of Sphingomonas strains and other xenobiotic-degrading microorganisms as well as gene expression studies in organophosphate biodegradation.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Kun Hao ◽  
Hongna Li ◽  
Feng Li ◽  
Ping Guo

Bacillus pumilus strain PDSLzg-1, an efficient hydrocarbon-degrading bacterium, was isolated from oil-contaminated soil. Here, we present the complete sequence of its circular chromosome and circular plasmid. The genomic information is essential for the study of degradation of oil by B. pumilus PDSLzg-1.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Xiongyu Zhu ◽  
Weiwei Wang ◽  
Ping Xu ◽  
Hongzhi Tang

Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation.


2020 ◽  
Vol 33 (11) ◽  
pp. 1277-1279 ◽  
Author(s):  
Menghao Yu ◽  
Jugpreet Singh ◽  
Awais Khan ◽  
George W. Sundin ◽  
Youfu Zhao

Erwinia amylovora causes fire blight, the most devastating bacterial disease of apples and pears in the United States and worldwide. The model strain E. amylovora Ea1189 has been extensively used to understand bacterial pathogenesis and molecular mechanisms of bacterial-plant interactions. In this work, we sequenced and assembled the de novo genome of Ea1189, using a combination of long Oxford Nanopore Technologies and short Illumina sequence reads. A complete gapless genome assembly of Ea1189 consists of a 3,797,741-bp circular chromosome and a 28,259-bp plasmid with 3,472 predicted genes, including 78 transfer RNAs, 22 ribosomal RNAs, and 20 noncoding RNAs. A comparison of the Ea1189 genome to previously sequenced E. amylovora complete genomes showed 99.94 to 99.97% sequence similarity with 314 to 946 single nucleotide polymorphisms. We believe that the availability of the complete genome sequence of strain Ea1189 will further support studies to understand evolution, diversity and structural variations of Erwinia strains, as well as the molecular basis of E. amylovora pathogenesis and its interactions with host plants, thus facilitating the development of effective management strategies for this important disease.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
So-Ra Han ◽  
Byeollee Kim ◽  
Jong Hwa Jang ◽  
Hyun Park ◽  
Tae-Jin Oh

Abstract Background The Arthrobacter group is a known set of bacteria from cold regions, the species of which are highly likely to play diverse roles at low temperatures. However, their survival mechanisms in cold regions such as Antarctica are not yet fully understood. In this study, we compared the genomes of 16 strains within the Arthrobacter group, including strain PAMC25564, to identify genomic features that help it to survive in the cold environment. Results Using 16 S rRNA sequence analysis, we found and identified a species of Arthrobacter isolated from cryoconite. We designated it as strain PAMC25564 and elucidated its complete genome sequence. The genome of PAMC25564 is composed of a circular chromosome of 4,170,970 bp with a GC content of 66.74 % and is predicted to include 3,829 genes of which 3,613 are protein coding, 147 are pseudogenes, 15 are rRNA coding, and 51 are tRNA coding. In addition, we provide insight into the redundancy of the genes using comparative genomics and suggest that PAMC25564 has glycogen and trehalose metabolism pathways (biosynthesis and degradation) associated with carbohydrate active enzyme (CAZymes). We also explain how the PAMC26654 produces energy in an extreme environment, wherein it utilizes polysaccharide or carbohydrate degradation as a source of energy. The genetic pattern analysis of CAZymes in cold-adapted bacteria can help to determine how they adapt and survive in such environments. Conclusions We have characterized the complete Arthrobacter sp. PAMC25564 genome and used comparative analysis to provide insight into the redundancy of its CAZymes for potential cold adaptation. This provides a foundation to understanding how the Arthrobacter strain produces energy in an extreme environment, which is by way of CAZymes, consistent with reports on the use of these specialized enzymes in cold environments. Knowledge of glycogen metabolism and cold adaptation mechanisms in Arthrobacter species may promote in-depth research and subsequent application in low-temperature biotechnology.


Nature ◽  
2000 ◽  
Vol 406 (6799) ◽  
pp. 959-964 ◽  
Author(s):  
C. K. Stover ◽  
X. Q. Pham ◽  
A. L. Erwin ◽  
S. D. Mizoguchi ◽  
P. Warrener ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document