scholarly journals Apparent Role for Borrelia burgdorferi LuxS during Mammalian Infection

2015 ◽  
Vol 83 (4) ◽  
pp. 1347-1353 ◽  
Author(s):  
William K. Arnold ◽  
Christina R. Savage ◽  
Alyssa D. Antonicello ◽  
Brian Stevenson

The Lyme disease spirochete,Borrelia burgdorferi, controls protein expression patterns during its tick-mammal infection cycle. Earlier studies demonstrated thatB. burgdorferisynthesizes 4,5-dihydroxy-2,3-pentanedione (autoinducer-2 [AI-2]) and responds to AI-2 by measurably changing production of several infection-associated proteins.luxSmutants, which are unable to produce AI-2, exhibit altered production of several proteins.B. burgdorfericannot utilize the other product of LuxS, homocysteine, indicating that phenotypes ofluxSmutants are not due to the absence of that molecule. Although a previous study found that aluxSmutant was capable of infecting mice, a critical caveat to those results is that bacterial loads were not quantified. To more precisely determine whether LuxS serves a role in mammalian infection, mice were simultaneously inoculated with congenic wild-type andluxSstrains, and bacterial numbers were assessed using quantitative PCR. The wild-type bacteria substantially outcompeted the mutants, suggesting that LuxS performs a significant function during mammalian infection. These data also provide further evidence that nonquantitative infection studies do not necessarily provide conclusive results and that regulatory factors may not make all-or-none, black-or-white contributions to infectivity.

2015 ◽  
Vol 83 (9) ◽  
pp. 3675-3683 ◽  
Author(s):  
Rebecca Byram ◽  
Robert A. Gaultney ◽  
Angela M. Floden ◽  
Christopher Hellekson ◽  
Brandee L. Stone ◽  
...  

The Lyme disease spirochete,Borrelia burgdorferi, expresses RevA and numerous outer surface lipoproteins during mammalian infection. As an adhesin that promotes bacterial interaction with fibronectin, RevA is poised to interact with the extracellular matrix of the host. To further define the role(s) of RevA during mammalian infection, we created a mutant that is unable to produce RevA. The mutant was still infectious to mice, although it was significantly less well able to infect cardiac tissues. Complementation of the mutant with a wild-typerevAgene restored heart infectivity to wild-type levels. Additionally,revAmutants led to increased evidence of arthritis, with increased fibrotic collagen deposition in tibiotarsal joints. The mutants also induced increased levels of the chemokine CCL2, a monocyte chemoattractant, in serum, and this increase was abolished in the complemented strain. Therefore, whilerevAis not absolutely essential for infection, deletion ofrevAhad distinct effects on dissemination, arthritis severity, and host response.


mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Matthew J. Reichlen ◽  
Venkata R. Vepachedu ◽  
Katsuhiko S. Murakami ◽  
James G. Ferry

ABSTRACT Results are presented supporting a regulatory role for the product of the MA3302 gene locus (designated MreA) previously annotated as a hypothetical protein in the methanogenic species Methanosarcina acetivorans of the domain Archaea. Sequence analysis of MreA revealed identity to the TrmB family of transcription factors, albeit the sequence is lacking the sensor domain analogous to TrmBL2, abundant in nonmethanogenic species of the domain Archaea. Transcription of mreA was highly upregulated during growth on acetate versus methylotrophic substrates, and an mreA deletion (ΔmreA) strain was impaired for growth with acetate in contrast to normal growth with methylotrophic substrates. Transcriptional profiling of acetate-grown cells identified 280 genes with altered expression in the ΔmreA strain versus the wild-type strain. Expression of genes unique to the acetate pathway decreased whereas expression of genes unique to methylotrophic metabolism increased in the ΔmreA strain relative to the wild type, results indicative of a dual role for MreA in either the direct or indirect activation of acetate-specific genes and repression of methylotrophic-specific genes. Gel shift experiments revealed specific binding of MreA to promoter regions of regulated genes. Homologs of MreA were identified in M. acetivorans and other Methanosarcina species for which expression patterns indicate roles in regulating methylotrophic pathways. IMPORTANCE Species in the domain Archaea utilize basal transcription machinery resembling that of the domain Eukarya, raising questions addressing the role of numerous putative transcription factors identified in sequenced archaeal genomes. Species in the genus Methanosarcina are ideally suited for investigating principles of archaeal transcription through analysis of the capacity to utilize a diversity of substrates for growth and methanogenesis. Methanosarcina species switch pathways in response to the most energetically favorable substrate, metabolizing methylotrophic substrates in preference to acetate marked by substantial regulation of gene expression. Although conversion of the methyl group of acetate accounts for most of the methane produced in Earth’s biosphere, no proteins involved in the regulation of genes in the acetate pathway have been reported. The results presented here establish that MreA participates in the global regulation of diverse methanogenic pathways in the genus Methanosarcina. Finally, the results contribute to a broader understanding of transcriptional regulation in the domain Archaea.


2003 ◽  
Vol 71 (5) ◽  
pp. 2892-2896 ◽  
Author(s):  
Anette Hübner ◽  
Andrew T. Revel ◽  
Dena M. Nolen ◽  
Kayla E. Hagman ◽  
Michael V. Norgard

ABSTRACT The luxS gene product is an integral component of LuxS/autoinducer-2 (AI-2) quorum-sensing systems in bacteria. A putative luxS gene was expressed at comparable levels by Borrelia burgdorferi strain 297 cultivated either in vitro or in dialysis membrane chambers implanted in rat peritoneal cavities. Although the borrelial luxS gene functionally complemented a LuxS deficiency in Escherichia coli DH5α, AI-2-like activity could not be detected within B. burgdorferi culture supernatants or concentrated cell lysates. Finally, a luxS-deficient mutant of B. burgdorferi was infectious at wild-type levels when it was intradermally needle inoculated into mice, indicating that expression of luxS probably is not required for infectivity but, at the very least, is not essential for mammalian host adaptation. Our findings also challenge the notion that a LuxS/AI-2 quorum-sensing system is operative in B. burgdorferi.


2013 ◽  
Vol 20 (6) ◽  
pp. 892-899 ◽  
Author(s):  
Angela M. Floden ◽  
Tammy Gonzalez ◽  
Robert A. Gaultney ◽  
Catherine A. Brissette

ABSTRACTPrevious studies indicated that the Lyme disease spirocheteBorrelia burgdorferiexpresses the RevA outer surface protein during mammalian infection. As an adhesin that promotes bacterial interaction with fibronectin, RevA appears to be a good target for preventive therapies. RevA proteins are highly conserved across all Lyme borreliae, and antibodies against RevA protein are cross-reactive among RevA proteins from diverse strains. Mice infected withB. burgdorferimounted a rapid IgM response to RevA, followed by a strong IgG response that generally remained elevated for more than 12 months, suggesting continued exposure of RevA protein to the immune system. RevA antibodies were bactericidalin vitro. To evaluate the RevA antigen as a potential vaccine, mice were vaccinated with recombinant RevA and challenged withB. burgdorferiby inoculation with a needle or by a tick bite. Cultured tissues from all treatment groups were positive forB. burgdorferi. Vaccinated animals also appeared to have similar levels ofB. burgdorferiDNA compared to nonvaccinated controls. Despite its antigenicity, surface expression, and the production of bactericidal antibodies against it, RevA does not protect againstBorrelia burgdorferiinfection in a mouse model. However, passive immunization with anti-RevA antibodies did prevent infection, suggesting the possible utility of RevA-based immunotherapeutics or vaccine.


2011 ◽  
Vol 79 (8) ◽  
pp. 3407-3420 ◽  
Author(s):  
B. V. Subba Raju ◽  
Maria D. Esteve-Gassent ◽  
S. L. Rajasekhar Karna ◽  
Christine L. Miller ◽  
Tricia A. Van Laar ◽  
...  

ABSTRACTBorrelia burgdorferi, the agent of Lyme disease, undergoes rapid adaptive gene expression in response to signals unique to its arthropod vector or vertebrate hosts. Among the upregulated genes under vertebrate host conditions is one of the five annotated homologs of oligopeptide permease A (OppA5, BBA34). A mutant lackingoppA5was constructed in an lp25-deficient isolate ofB. burgdorferistrain B31, and the minimal regions of infectivity were restored via a shuttle vector pBBE22 with or without an intact copy ofbba34. Immunoblot analysis of thebba34mutant revealed a reduction in the levels of RpoS, BosR, and CsrABbwith a concomitant reduction in the levels of OspC, DbpA, BBK32, and BBA64. There were no changes in the levels of OspA, NapA, P66, and three other OppA orthologs. Quantitative transcriptional analysis correlated with the changes in the protein levels. However, thebba34mutant displayed comparable infectivities in the C3H/HeN mice and the wild-type strain, despite the reduction in several pathogenesis-related proteins. Supplementation of the growth medium with increased levels of select components, notably sodium acetate and sodium bicarbonate, restored the levels of several proteins in thebba34mutant to wild-type levels. We speculate that the transport of acetate appears to contribute to the accumulation of key metabolites, like acetyl phosphate, that facilitate the adaptation ofB. burgdorferito the vertebrate host by the activation of the Rrp2-RpoN-RpoS pathway. These studies underscore the importance of solute transport to host-specific adaptation ofB. burgdorferi.


mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Pauline Yoong ◽  
Colette Cywes-Bentley ◽  
Gerald B. Pier

ABSTRACTNumerous bacteria, includingYersinia pestis, express the poly-N-acetylglucosamine (PNAG) surface carbohydrate, a major component of biofilms often associated with a specific appearance of colonies on Congo red agar. Biofilm formation and PNAG synthesis byY. pestishave been reported to be maximal at 21 to 28°C or “flea temperatures,” facilitating the regurgitation ofY. pestisinto a mammalian host during feeding, but production is diminished at 37°C and thus presumed to be decreased during mammalian infection. Most studies of PNAG expression and biofilm formation byY. pestishave used a low-virulence derivative of strain KIM, designated KIM6+, that lacks the pCD1 virulence plasmid, and an isogenic mutant without the pigmentation locus, which contains the hemin storage genes that encode PNAG biosynthetic proteins. Using confocal microscopy, fluorescence-activated cell sorter analysis and growth on Congo red agar, we confirmed prior findings regarding PNAG production with the KIM6+ strain. However, we found that fully virulent wild-type (WT) strains KIM and CO92 had maximal PNAG expression at 37°C, with lower PNAG production at 28°C both in broth medium and on Congo red agar plates. Notably, the typical dark colony morphology appearing on Congo red agar was maintained at 28°C, indicating that this phenotype is not associated with PNAG expression in WTY. pestis. Extracts of WT sylvaticY. pestisstrains from the Russian Federation confirmed the maximal expression of PNAG at 37°C. PNAG production by WTY. pestisis maximal at mammalian and not insect vector temperatures, suggesting that this factor may have a role during mammalian infection.IMPORTANCEYersinia pestistransitions from low-temperature residence and replication in insect vectors to higher-temperature replication in mammalian hosts. Prior findings based primarily on an avirulent derivative of WT (wild-type) KIM, named KIM6+, showed that biofilm formation associated with synthesis of poly-N-acetylglucosamine (PNAG) is maximal at 21 to 28°C and decreased at 37°C. Biofilm formation was purported to facilitate the transmission ofY. pestisfrom fleas to mammals while having little importance in mammalian infection. Here we found that for WT strains KIM and CO92, maximal PNAG production occurs at 37°C, indicating that temperature regulation of PNAG production in WTY. pestisis not mimicked by strain KIM6+. Additionally, we found that Congo red binding does not always correlate with PNAG production, despite its widespread use as an indicator of biofilm production. Taken together, the findings show that a role for PNAG in WTY. pestisinfection should not be disregarded and warrants further study.


2008 ◽  
Vol 298 ◽  
pp. 249-256 ◽  
Author(s):  
Tomasz Bykowski ◽  
Michael E. Woodman ◽  
Anne E. Cooley ◽  
Catherine A. Brissette ◽  
Reinhard Wallich ◽  
...  

1998 ◽  
Vol 180 (9) ◽  
pp. 2418-2425 ◽  
Author(s):  
Yigong Ge ◽  
Chunhao Li ◽  
Linda Corum ◽  
Clive A. Slaughter ◽  
Nyles W. Charon

ABSTRACT The spirochete which causes Lyme disease, Borrelia burgdorferi, has many features common to other spirochete species. Outermost is a membrane sheath, and within this sheath are the cell cylinder and periplasmic flagella (PFs). The PFs are subterminally attached to the cell cylinder and overlap in the center of the cell. Most descriptions of the B. burgdorferi flagellar filaments indicate that these organelles consist of only one flagellin protein (FlaB). In contrast, the PFs from other spirochete species are comprised of an outer layer of FlaA and a core of FlaB. We recently found that a flaA homolog was expressed in B. burgdorferi and that it mapped in a fla/che operon. These results led us to analyze the PFs and FlaA of B. burgdorferi in detail. Using Triton X-100 to remove the outer membrane and isolate the PFs, we found that the 38.0-kDa FlaA protein purified with the PFs in association with the 41.0-kDa FlaB protein. On the other hand, purifying the PFs by using Sarkosyl resulted in no FlaA in the isolated PFs. Sarkosyl has been used by others to purifyB. burgdorferi PFs, and our results explain in part their failure to find FlaA. Unlike other spirochetes, B. burgdorferi FlaA was expressed at a lower level than FlaB. In characterizing FlaA, we found that it was posttranslationally modified by glycosylation, and thus it resembles its counterpart fromSerpulina hyodysenteriae. We also tested if FlaA was synthesized in a spontaneously occurring PF mutant of B. burgdorferi (HB19Fla−). Although this mutant still synthesizedflaA message in amounts similar to the wild-type amounts, it failed to synthesize FlaA protein. These results suggest that, in agreement with data found for FlaB and other spirochete flagellar proteins, FlaA is likely to be regulated on the translational level. Western blot analysis using Treponema pallidum anti-FlaA serum indicated that FlaA was antigenically well conserved in several spirochete species. Taken together, the results indicate that both FlaA and FlaB comprise the PFs of B. burgdorferi and that they are regulated differently from flagellin proteins of other bacteria.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Alexandra E. Paharik ◽  
Wilmara Salgado-Pabon ◽  
David K. Meyerholz ◽  
Mark J. White ◽  
Patrick M. Schlievert ◽  
...  

ABSTRACT Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins. The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCE Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins.


2007 ◽  
Vol 75 (6) ◽  
pp. 3131-3139 ◽  
Author(s):  
Michael E. Woodman ◽  
Anne E. Cooley ◽  
Jennifer C. Miller ◽  
John J. Lazarus ◽  
Kathryn Tucker ◽  
...  

ABSTRACT The causative agent of Lyme disease, Borrelia burgdorferi, is naturally resistant to its host's alternative pathway of complement-mediated killing. Several different borrelial outer surface proteins have been identified as being able to bind host factor H, a regulator of the alternative pathway, leading to a hypothesis that such binding is important for borrelial resistance to complement. To test this hypothesis, the development of B. burgdorferi infection was compared between factor H-deficient and wild-type mice. Factor B- and C3-deficient mice were also studied to determine the relative roles of the alternative and classical/lectin pathways in B. burgdorferi survival during mammalian infection. While it was predicted that B. burgdorferi should be impaired in its ability to infect factor H-deficient animals, quantitative analyses of bacterial loads indicated that those mice were infected at levels similar to those of wild-type and factor B- and C3-deficient mice. Ticks fed on infected factor H-deficient or wild-type mice all acquired similar numbers of bacteria. Indirect immunofluorescence analysis of B. burgdorferi acquired by feeding ticks from the blood of infected mice indicated that none of the bacteria had detectable levels of factor H on their outer surfaces, even though such bacteria express high levels of surface proteins capable of binding factor H. These findings demonstrate that the acquisition of host factor H is not essential for mammalian infection by B. burgdorferi and indicate that additional mechanisms are employed by the Lyme disease spirochete to evade complement-mediated killing.


Sign in / Sign up

Export Citation Format

Share Document