scholarly journals Inhibition of Apoptosis in Cryptosporidium parvum-Infected Intestinal Epithelial Cells Is Dependent on Survivin

2008 ◽  
Vol 76 (8) ◽  
pp. 3784-3792 ◽  
Author(s):  
Jin Liu ◽  
Shinichiro Enomoto ◽  
Cheryl A. Lancto ◽  
Mitchell S. Abrahamsen ◽  
Mark S. Rutherford

ABSTRACT Cryptosporidium parvum is an obligate intracellular protozoan capable of causing severe diarrheal disease in a wide variety of mammals, including humans. C. parvum infection has been associated with induction of apoptosis in exposed epithelial cells, and we now demonstrate that apoptosis is restricted to a subset of cells actively infected with C. parvum. Approximately 20% of the infected cells underwent apoptosis within 48 h of infection, suggesting that the majority of the infected cells are rescued from apoptosis. C. parvum infection resulted in low-level activation of multiple members of the caspase family, including caspase-2, -3, -4, -6, -8, and -9. The kinetics of caspase activation correlated with apoptosis over a 48-h time course. Pan caspase inhibitors reduced apoptosis of epithelial cells infected by C. parvum. Furthermore, C. parvum infection inhibited staurosporine-induced apoptosis and caspase-3/7 activation at 24 h and 48 h. Infection with C. parvum led to upregulation of genes encoding inhibitors of apoptosis proteins (IAPs), including c-IAP1, c-IAP2, XIAP, and survivin. Knockdown of survivin gene expression, but not that of c-IAP1, c-IAP2, or XIAP expression, increased caspase-3/7 activity as well as apoptosis of infected cells and decreased C. parvum 18S rRNA levels. These data suggest that the apoptotic response of infected intestinal epithelial cells is actively suppressed by C. parvum via upregulation of survivin, favoring parasite infection.

2019 ◽  
Vol 317 (6) ◽  
pp. C1205-C1212 ◽  
Author(s):  
Anoop Kumar ◽  
Dulari Jayawardena ◽  
Arivarasu N. Anbazhagan ◽  
Ishita Chatterjee ◽  
Shubha Priyamvada ◽  
...  

The protozoan parasite Cryptosporidium parvum (CP) causes cryptosporidiosis, a diarrheal disease worldwide. Infection in immunocompetent hosts typically results in acute, self-limiting, or recurrent diarrhea. However, in immunocompromised individuals infection can cause fulminant diarrhea, extraintestinal manifestations, and death. To date, the mechanisms underlying CP-induced diarrheal pathogenesis are poorly understood. Diarrheal diseases most commonly involve increased secretion and/or decreased absorption of fluid and electrolytes. We and others have previously shown impaired chloride absorption in infectious diarrhea due to dysregulation of SLC26A3 [downregulated in adenoma (DRA)], the human intestinal apical membrane Cl−/[Formula: see text] exchanger protein. However, there are no studies on the effects of CP infection on DRA activity. Therefore, we examined the expression and function of DRA in intestinal epithelial cells in response to CP infection in vitro and in vivo. CP infection (0.5 × 106 oocysts/well in 24-well plates, 24 h) of Caco-2 cell monolayers significantly decreased Cl−/[Formula: see text] exchange activity (measured as DIDS-sensitive 125I uptake) as well as DRA mRNA and protein levels. Substantial downregulation of DRA mRNA and protein was also observed following CP infection ex vivo in mouse enteroid-derived monolayers and in vivo in the ileal and jejunal mucosa of C57BL/6 mice for 24 h. However, at 48 h after infection in vivo, the effects on DRA mRNA and protein were attenuated and at 5 days after infection DRA returned to normal levels. Our results suggest that impaired chloride absorption due to downregulation of DRA could be one of the contributing factors to CP-induced acute, self-limiting diarrhea in immunocompetent hosts.


2004 ◽  
Vol 286 (5) ◽  
pp. C1009-C1018 ◽  
Author(s):  
Tongtong Zou ◽  
Jaladanki N. Rao ◽  
Xin Guo ◽  
Lan Liu ◽  
Huifang M. Zhang ◽  
...  

Apoptosis plays a crucial role in maintenance of intestinal epithelial integrity and is highly regulated by numerous factors, including cellular polyamines. We recently showed that polyamines regulate nuclear factor (NF)-κB activity in normal intestinal epithelial (IEC-6) cells and that polyamine depletion activates NF-κB and promotes resistance to apoptosis. The current study went further to determine whether the inhibitors of apoptosis (IAP) family of proteins, c-IAP2 and XIAP, are downstream targets of activated NF-κB and play a role in antiapoptotic activity of polyamine depletion in IEC-6 cells. Depletion of cellular polyamines by α-difluoromethylornithine not only activated NF-κB activity but also increased expression of c-IAP2 and XIAP. Specific inhibition of NF-κB by the recombinant adenoviral vector containing IκBα superrepressor (Ad Iκ BSR) prevented the induction of c-IAP2 and XIAP in polyamine-deficient cells. Decreased levels of c-IAP2 and XIAP proteins by inactivation of NF-κB through Ad Iκ BSR infection or treatment with the specific inhibitor Smac also overcame the resistance of polyamine-depleted cells to apoptosis induced by the combination of tumor necrosis factor (TNF)-α and cycloheximide (CHX). Although polyamine depletion did not alter levels of procaspase-3 protein, it inhibited formation of the active caspase-3. Decreased levels of c-IAP2 and XIAP by Smac prevented the inhibitory effect of polyamine depletion on the cleavage of procaspase-3 to the active caspase-3. These results indicate that polyamine depletion increases expression of c-IAP2 and XIAP by activating NF-κB in intestinal epithelial cells. Increased c-IAP2 and XIAP after polyamine depletion induce the resistance to TNF-α/CHX-induced apoptosis, at least partially, through inhibition of the caspase-3 activity.


1999 ◽  
Vol 67 (10) ◽  
pp. 5282-5291 ◽  
Author(s):  
Rebecca C. Langer ◽  
Michael W. Riggs

ABSTRACT Cryptosporidiosis, caused by the apicomplexan parasiteCryptosporidium parvum, has become a well-recognized diarrheal disease of humans and other mammals throughout the world. No approved parasite-specific drugs, vaccines, or immunotherapies for control of the disease are currently available, although passive immunization with C. parvum-specific antibodies has some efficacy in immunocompromised and neonatal hosts. We previously reported that CSL, an ∼1,300-kDa conserved apical glycoprotein of C. parvum sporozoites and merozoites, is the antigenic species mechanistically bound by neutralizing monoclonal antibody 3E2 which elicits the circumsporozoite precipitate (CSP)-like reaction and passively protects against C. parvum infection in vivo. These findings indicated that CSL has a functional role in sporozoite infectivity. Here we report that CSL has properties consistent with being a sporozoite ligand for intestinal epithelial cells. For these studies, native CSL was isolated from whole sporozoites by isoelectric focusing (IEF) following observations that the ∼1,300-kDa region containing CSL as seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was comprised of approximately 15 molecular species (pI 3 to 10) when examined by two-dimensional (2-D) electrophoresis and silver staining. A subset of six ∼1,300-kDa species (pI 4.0 to 6.5) was specifically recognized by 3E2 in 2-D Western immunoblots of IEF-isolated CSL. Isolated native CSL bound specifically and with high affinity to permissive human intestinal epithelial Caco-2 cells in a dose-dependent, saturable, and self-displaceable manner. Further, CSL specifically bound to the surface of live Caco-2 cells inhibited sporozoite attachment and invasion. In addition, sporozoites having released CSL after incubation with 3E2 and occurrence of the CSP-like reaction did not attach to and invade Caco-2 cells. These findings indicate that CSL contains a sporozoite ligand which facilitates attachment to and invasion of Caco-2 cells and, further, that ligand function may be disrupted by CSL-reactive monoclonal antibody. We conclude that CSL is a rational target for passive or active immunization against cryptosporidiosis.


2008 ◽  
Vol 76 (8) ◽  
pp. 3735-3741 ◽  
Author(s):  
Naheed Choudhry ◽  
Mona Bajaj-Elliott ◽  
Vincent McDonald

ABSTRACT The apicomplexan Cryptosporidium parvum reproduces in the intestinal epithelial cells of many mammalian species and is an agent of the important diarrheal disease cryptosporidiosis. Infection is transmitted fecal-orally by oocysts that pass through the stomach and excystation occurs in the intestine, releasing four invasive sporozoites. Some factors involved in inducing excystation have been identified, but the role of the enterocyte is not known. The present study showed that excystation was accelerated in the presence of the three enterocyte cell lines Caco2, HCT8, and CMT93. Epithelial cell lines derived from other organs, including the stomach, had no effect on excystation. No evidence was obtained that factors secreted from enterocytes induced excystation, but an enterocyte membrane preparation promoted sporozoite release. In addition, modification of the enterocyte surface by trypsin digestion or paraformaldehyde fixation abrogated the ability to enhance excystation. Importantly, the level of excystation in the presence of enterocytes decreased after treatment with either sialidase/neuraminidase to deplete surface terminal sialic acid or with lectins that specifically bind to sialic acid. Furthermore, the addition of sialic acid to oocysts in the absence of cells increased the level of excystation. These results suggest that sialic acid on the surface of enterocytes may provide an important local signal for the excystation of C. parvum sporozoites.


2006 ◽  
Vol 74 (1) ◽  
pp. 769-772 ◽  
Author(s):  
Scarlett Goon ◽  
Cheryl P. Ewing ◽  
Maria Lorenzo ◽  
Dawn Pattarini ◽  
Gary Majam ◽  
...  

ABSTRACT A Campylobacter jejuni 81-176 mutant in Cj0977 was fully motile but reduced >3 logs compared to the parent in invasion of intestinal epithelial cells in vitro. The mutant was also attenuated in a ferret diarrheal disease model. Expression of Cj0977 protein was dependent on a minimal flagella structure.


1998 ◽  
Vol 274 (6) ◽  
pp. G1117-G1124 ◽  
Author(s):  
Johannes Grossmann ◽  
Susanne Mohr ◽  
Eduardo G. Lapetina ◽  
Claudio Fiocchi ◽  
Alan D. Levine

Detachment-induced cell death (DICD) is considered to be one of the means by which intestinal epithelial cells (IEC) die of apoptosis as they reach the lumen and are shed. Caspases, a family of cysteine proteases, play a central role in initiating, amplifying, and executing apoptosis; however, the pattern of caspase activation in response to distinct apoptotic stimuli remains unknown. We investigated the kinetics of caspase activation during DICD in freshly isolated human IEC. DNA fragmentation is observed 90 min after detachment and is preceded by the sequential activation of preformed members of the CPP32 family of caspases. Activation of caspase 6 and cleavage of the endogenous caspase substrate poly(ADP-ribose) polymerase (EC 2.4.2.30 ) are detected within 15 min of detachment, 30–45 min before caspase 3 activation. Caspase 1 and caspase 10 are present as proenzymes, yet they remain inactive in response to this trigger of apoptosis. Human IEC are primed to rapidly undergo detachment-induced apoptosis involving the selective and sequential activation of preformed caspases. This study may enhance our understanding of physiological events occurring as IEC are shed. Their rapid apoptotic response to detachment may facilitate the high turnover of cells and ensure homeostasis in the intestinal epithelium.


Sign in / Sign up

Export Citation Format

Share Document