scholarly journals Identification of the Chromosomal Region Essential for Serovar-Specific Antigen and Virulence of Serovar 1 and 2 Strains ofErysipelothrix rhusiopathiae

2018 ◽  
Vol 86 (9) ◽  
Author(s):  
Yohsuke Ogawa ◽  
Kazumasa Shiraiwa ◽  
Sayaka Nishikawa ◽  
Masahiro Eguchi ◽  
Yoshihiro Shimoji

ABSTRACTErysipelothrix rhusiopathiaecauses swine erysipelas, an infection characterized by acute septicemia or chronic endocarditis and polyarthritis. Among 17E. rhusiopathiaeserovars, determined based on heat-stable peptidoglycan antigens, serovars 1 and 2 are most commonly associated with the disease; however, the molecular basis for the association between these serovars and virulence is unknown. To search for the genetic region defining serovar 1a (Fujisawa) strain antigenicity, we examined the 15-kb chromosomal region encompassing a putative pathway for polysaccharide biosynthesis, which was previously identified in theE. rhusiopathiaeFujisawa strain. Six transposon mutants of Fujisawa strain possessing a mutation in this region lost antigenic reactivity with serovar 1a-specific rabbit serum. Sequence analysis of this region in wild-type strains of serovars 1a, 1b, and 2 and serovar N, which lacks serovar-specific antigens, revealed that gene organization was similar among the strains and that serovar 2 strains showed variation. Serovar N strains displayed the same gene organization as the serovar 1a, 1b, or 2 strain and possessed certain mutations in this region. In two of the analyzed serovar N strains, restoration of the mutations via complementation with sequences derived from serovar 1a and 2 strains recovered antigenic reactivity with 1a- and 2-specific rabbit serum, respectively. Several gene mutations in this region resulted in altered capsule expression and attenuation of virulence in mice. These results indicate a functional connection between the biosynthetic pathways for the capsular polysaccharide and peptidoglycan antigens used for serotyping, which may explain variation in virulence among strains of different serovars.

2012 ◽  
Vol 80 (11) ◽  
pp. 3993-4003 ◽  
Author(s):  
Fang Shi ◽  
Tomoyuki Harada ◽  
Yohsuke Ogawa ◽  
Hiroshi Ono ◽  
Mayumi Ohnishi-Kameyama ◽  
...  

ABSTRACTThe capsule has been implicated in the virulence of the swine pathogenErysipelothrix rhusiopathiae, a rod-shaped, intracellular Gram-positive bacterium that has a unique phylogenetic position in the phylumFirmicutesand is a close relative ofMollicutes(mycoplasma species). In this study, we analyzed the genetic locus and composition of the capsular polysaccharide (CPS) of the Fujisawa strain ofE. rhusiopathiae. Genome analysis of the Fujisawa strain revealed that the genetic locus for capsular polysaccharide synthesis (cps) is located next to anlicoperon, which is involved in the incorporation and expression of phosphorylcholine (PCho). Reverse transcription-PCR analysis showed thatcpsandlicare transcribed as a single mRNA, indicating that the loci form an operon. Using the cell surface antigen-specific monoclonal antibody (MAb) ER21 as a probe, the capsular materials were isolated from the Fujisawa strain by hot water extraction and treatment with DNase, RNase, pronase, andN-acetylmuramidase SG, followed by anion-exchange and gel filtration chromatography. The materials were then analyzed by high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The CPS ofE. rhusiopathiaeis heterogeneous and consists of the major monosaccharides galacturonic acid, galactose, mannose, glucose, arabinose, xylose, andN-acetylglucosamine and some minor monosaccharides containing ribose, rhamnose, andN-acetylgalactosamine. In addition, the capsule is modified by PCho, which comigrates with the capsular materials, as determined by Western immunoblotting, and colocalizes on the cell surface, as determined by immunogold electron microscopy. Virulence testing of PCho-defective mutants in mice demonstrated that PCho is critical for the virulence of this organism.


2020 ◽  
Vol 69 (10) ◽  
pp. 1249-1252
Author(s):  
Yudai Taguchi ◽  
Kazumasa Shiraiwa ◽  
Yohsuke Ogawa ◽  
Tomoki Oi ◽  
Shigeo Nakamura ◽  
...  

Erysipelothrix rhusiopathiae is a zoonotic pathogen that causes erysipelas in a variety of animals. In humans, in contrast to the cutaneous form called erysipeloid, which is an occupational disease and common in individuals who handle raw meat and fish, invasive systemic infections are unusual. E. rhusiopathiae expresses an immunogenic surface protein, Spa (surface protective antigen), which is involved in virulence. Among the antigenically different Spa proteins (SpaA, B and C), which are mostly associated with serovars, SpaA is by far the most prevalent in E. rhusiopathiae isolates from diseased animals. However, the Spa type has not been examined for human isolates, and it is unknown whether SpaB- or SpaC-possessing isolates can cause disease in humans. A Gram-positive, rod-shaped bacterium isolated from a case of human pyogenic spondylitis was analysed. The bacterium was identified as E. rhusiopathiae by a routine biochemical test and MS, and ultimately confirmed by an E. rhusiopathiae -specific PCR assay. Spa typing by sequencing revealed the SpaB type, and the serovar of the strain was identified as untypeable by a conventional agar gel precipitation test, but determined to be serovar 6 by a serotyping PCR assay. Sequence analysis of the serovar-defining chromosomal region revealed that the isolate displayed the same gene organization as the serovar 6 reference strain, but the region was disrupted by an insertion sequence element, suggesting that the isolate originated from a serovar 6 strain. These results highlight that unusual, spaB-possessing E. rhusiopathiae strains can potentially pose serious risks to humans.


1943 ◽  
Vol 78 (5) ◽  
pp. 327-332 ◽  
Author(s):  
Stuart Mudd ◽  
Ferdinand Heinmets ◽  
Thomas F. Anderson

Electron micrographs indicate, in harmony with previous findings, that the pneumococcal capsule is a gel of low density outside of and closely applied to the bacterial cell wall. Interaction with homologous immune rabbit serum greatly increases the thickness and density of this capsular gel; the increase in thickness of the specifically swollen pneumococcal capsule may exceed by 25-fold the thickness of the surface deposit caused by rabbit immune serum on the cell walls and flagella of homologous non-capsulated bacteria. Conclusions drawn from these and earlier data are that homologous immune serum permeates the pneumococcal capsular gel; the specific antibody combines with the capsular polysaccharide; non-specific serum components are secondarily adsorbed to or combined with the specific antigen-antibody complex. The relatively low antibacterial titers characteristic of pneumococcal antisera can be explained in part by the permeation of the capsule by antiserum, in part by the high combining capacity of pneumococcal carbohydrate for antibody (17).


2020 ◽  
Vol 58 (6) ◽  
Author(s):  
Yoshihiro Shimoji ◽  
Kazumasa Shiraiwa ◽  
Haruka Tominaga ◽  
Sayaka Nishikawa ◽  
Masahiro Eguchi ◽  
...  

ABSTRACT The Gram-positive bacterium Erysipelothrix rhusiopathiae is a zoonotic pathogen that causes erysipelas in a wide range of mammalian and avian species. Historically, E. rhusiopathiae has been differentiated from other Erysipelothrix species by serotyping. Among 28 serovars of Erysipelothrix species, specific serovars, namely, 1a, 1b, and 2 of E. rhusiopathiae, are associated mainly with the disease in pigs, poultry, and humans; however, other serovar strains are often simultaneously isolated from diseased and healthy animals, indicating the importance of isolate serotyping for epidemiology. The traditional serotyping protocol, which uses heat-stable peptidoglycan antigens and type-specific rabbit antisera in an agar-gel precipitation test, is time-consuming and labor-intensive. To develop a rapid serotyping scheme, we analyzed sequences of the 12- to 22-kb chromosomal region, which corresponds to the genetic region responsible for virulence of serovar 1a and 2 strains of E. rhusiopathiae, of the 28 serovars of Erysipelothrix species. We confirmed that the serovar 13 strain lacks the genomic region and that some serovar strains possess very similar or the same genetic structure, prohibiting differentiation of the serovars. We created 4 multiplex PCR sets allowing the simultaneous detection and differentiation of the majority of Erysipelothrix serovars. Together with a previously reported multiplex PCR that can differentiate serovars 1a, 1b, 2, and 5, the multiplex PCR-based assay developed in this study covers all but one (serovar 13) of the reported serovars of Erysipelothrix species and should be a valuable tool for etiological as well as epidemiological studies of Erysipelothrix infections.


mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Masahide Yano ◽  
Shruti Gohil ◽  
J. Robert Coleman ◽  
Catherine Manix ◽  
Liise-anne Pirofski

ABSTRACTThe use of pneumococcal capsular polysaccharide (PPS)-based vaccines has resulted in a substantial reduction in invasive pneumococcal disease. However, much remains to be learned about vaccine-mediated immunity, as seven-valent PPS-protein conjugate vaccine use in children has been associated with nonvaccine serotype replacement and 23-valent vaccine use in adults has not prevented pneumococcal pneumonia. In this report, we demonstrate that certain PPS-specific monoclonal antibodies (MAbs) enhance the transformation frequency of two differentStreptococcus pneumoniaeserotypes. This phenomenon was mediated by PPS-specific MAbs that agglutinate but do not promote opsonic effector cell killing of the homologous serotypeinvitro. Compared to the autoinducer, competence-stimulating peptide (CSP) alone, transcriptional profiling of pneumococcal gene expression after incubation with CSP and one such MAb to the PPS of serotype 3 revealed changes in the expression of competence (com)-related and bacteriocin-like peptide (blp) genes involved in pneumococcal quorum sensing. This MAb was also found to induce a nearly 2-fold increase in CSP2-mediated bacterial killing or fratricide. These observations reveal a novel, direct effect of PPS-binding MAbs on pneumococcal biology that has important implications for antibody immunity to pneumococcus in the pneumococcal vaccine era. Taken together, our data suggest heretofore unsuspected mechanisms by which PPS-specific antibodies could affect genetic exchange and bacterial viability in the absence of host cells.IMPORTANCECurrent thought holds that pneumococcal capsular polysaccharide (PPS)-binding antibodies protect against pneumococcus by inducing effector cell opsonic killing of the homologous serotype. While such antibodies are an important part of how pneumococcal vaccines protect against pneumococcal disease, PPS-specific antibodies that do not exhibit this activity but are highly protective against pneumococcus in mice have been identified. This article examines the effect of nonopsonic PPS-specific monoclonal antibodies (MAbs) on the biology ofStreptococcus pneumoniae. The results showed that in the presence of a competence-stimulating peptide (CSP), such MAbs increase the frequency of pneumococcal transformation. Further studies with one such MAb showed that it altered the expression of genes involved in quorum sensing and increased competence-induced killing or fratricide. These findings reveal a novel, previously unsuspected mechanism by which certain PPS-specific antibodies exert a direct effect on pneumococcal biology that has broad implications for bacterial clearance, genetic exchange, and antibody immunity to pneumococcus.


2012 ◽  
Vol 80 (11) ◽  
pp. 3921-3929 ◽  
Author(s):  
Donporn Riyapa ◽  
Surachat Buddhisa ◽  
Sunee Korbsrisate ◽  
Jon Cuccui ◽  
Brendan W. Wren ◽  
...  

ABSTRACTBurkholderia pseudomalleiis the causative pathogen of melioidosis, of which a major predisposing factor is diabetes mellitus. Polymorphonuclear neutrophils (PMNs) kill microbes extracellularly by the release of neutrophil extracellular traps (NETs). PMNs play a key role in the control of melioidosis, but the involvement of NETs in killing ofB. pseudomalleiremains obscure. Here, we showed that bactericidal NETs were released from human PMNs in response toB. pseudomalleiin a dose- and time-dependent manner.B. pseudomallei-induced NET formation required NADPH oxidase activation but not phosphatidylinositol-3 kinase, mitogen-activated protein kinases, or Src family kinase signaling pathways.B. pseudomalleimutants defective in the virulence-associated Bsa type III protein secretion system (T3SS) or capsular polysaccharide I (CPS-I) induced elevated levels of NETs. NET induction by such mutants was associated with increased bacterial killing, phagocytosis, and oxidative burst by PMNs. Taken together the data imply that T3SS and the capsule may play a role in evading the induction of NETs. Importantly, PMNs from diabetic subjects released NETs at a lower level than PMNs from healthy subjects. Modulation of NET formation may therefore be associated with the pathogenesis and control of melioidosis.


2012 ◽  
Vol 11 (4) ◽  
pp. 507-517 ◽  
Author(s):  
Tadashi Takahashi ◽  
Masahiro Ogawa ◽  
Yasuji Koyama

ABSTRACT Loop-out-type recombination is a type of intrachromosomal recombination followed by the excision of a chromosomal region. The detailed mechanism underlying this recombination and the genes involved in loop-out recombination remain unknown. In the present study, we investigated the functions of ku70 , ligD , rad52 , rad54 , and rdh54 in the construction of large chromosomal deletions via loop-out recombination and the effect of the position of the targeted chromosomal region on the efficiency of loop-out recombination in Aspergillus oryzae . The efficiency of generation of large chromosomal deletions in the near-telomeric region of chromosome 3, including the aflatoxin gene cluster, was compared with that in the near-centromeric region of chromosome 8, including the tannase gene. In the Δ ku70 and Δ ku70-rdh54 strains, only precise loop-out recombination occurred in the near-telomeric region. In contrast, in the Δ ligD , Δ ku70-rad52 , and Δ ku70-rad54 strains, unintended chromosomal deletions by illegitimate loop-out recombination occurred in the near-telomeric region. In addition, large chromosomal deletions via loop-out recombination were efficiently achieved in the near-telomeric region, but barely achieved in the near-centromeric region, in the Δ ku70 strain. Induction of DNA double-strand breaks by I-SceI endonuclease facilitated large chromosomal deletions in the near-centromeric region. These results indicate that ligD , rad52 , and rad54 play a role in the generation of large chromosomal deletions via precise loop-out-type recombination in the near-telomeric region and that loop-out recombination between distant sites is restricted in the near-centromeric region by chromosomal structure.


2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Orhan Sahin ◽  
Samantha A. Terhorst ◽  
Eric R. Burrough ◽  
Zhangqi Shen ◽  
Zuowei Wu ◽  
...  

ABSTRACT Campylobacter jejuni is a zoonotic pathogen, and a hypervirulent clone, named clone SA, has recently emerged as the predominant cause of ovine abortion in the United States. To induce abortion, orally ingested Campylobacter must translocate across the intestinal epithelium, spread systemically in the circulation, and reach the fetoplacental tissue. Bacterial factors involved in these steps are not well understood. C. jejuni is known to produce capsular polysaccharide (CPS), but the specific role that CPS plays in systemic infection and particularly abortion in animals remains to be determined. In this study, we evaluated the role of CPS in bacteremia using a mouse model and in abortion using a pregnant guinea pig model following oral challenge. Compared with C. jejuni NCTC 11168 and 81-176, a clone SA isolate (IA3902) resulted in significantly higher bacterial counts and a significantly longer duration of bacteremia in mice. The loss of capsule production via gene-specific mutagenesis in IA3902 led to the complete abolishment of bacteremia in mice and abortion in pregnant guinea pigs, while complementation of capsule expression almost fully restored these phenotypes. The capsule mutant strain was also impaired for survival in guinea pig sera and sheep blood. Sequence-based analyses revealed that clone SA possesses a unique CPS locus with a mosaic structure, which has been stably maintained in all clone SA isolates derived from various hosts and times. These findings establish CPS as a key virulence factor for the induction of systemic infection and abortion in pregnant animals and provide a viable candidate for the development of vaccines against hypervirulent C. jejuni.


2018 ◽  
Vol 87 (3) ◽  
Author(s):  
Win-Yan Chan ◽  
Claire Entwisle ◽  
Giuseppe Ercoli ◽  
Elise Ramos-Sevillano ◽  
Ann McIlgorm ◽  
...  

ABSTRACTCurrent vaccination againstStreptococcus pneumoniaeuses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared fromS. pneumoniaeTIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains ofS. pneumoniaewere opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologousS. pneumoniaestrains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection againstS. pneumoniae.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Yohsuke Ogawa ◽  
Kazumasa Shiraiwa ◽  
Yoshitoshi Ogura ◽  
Tadasuke Ooka ◽  
Sayaka Nishikawa ◽  
...  

ABSTRACTErysipelothrix rhusiopathiaecauses swine erysipelas, an important infectious disease in the swine industry. In Japan, the incidence of acute swine erysipelas due toE. rhusiopathiaeserovar 1a has recently increased markedly. To study the genetic relatedness of the strains from the recent cases, we analyzed 34E. rhusiopathiaeserovar 1a swine isolates collected between 1990 and 2011 and further investigated the possible association of the live Koganei 65-0.15 vaccine strain (serovar 1a) with the increase in cases. Pulsed-field gel electrophoresis analysis revealed no marked variation among the isolates; however, sequencing analysis of a hypervariable region in the surface-protective antigen A gene (spaA) revealed that the strains isolated after 2007 exhibited the samespaAgenotype and could be differentiated from older strains. Phylogenetic analysis based on genome-wide single-nucleotide polymorphisms (SNPs) revealed that the Japanese strains examined were closely related, showing a relatively small number of SNPs among them. The strains were classified into four major lineages, with Koganei 65-0.15 (lineage III) being phylogenetically separated from the other three lineages. The strains isolated after 2007 and the two older strains constituted one major lineage (lineage IV) with a specificspaAgenotype (M203/I257-SpaA), while the recent isolates were further divided into two geographic groups. The remaining older isolates belonged to either lineage I, with the I203/L257-SpaA type, or lineage II, with the I203/I257-SpaA type. These results indicate that the recent increased incidence of acute swine erysipelas in Japan is associated with two sublineages of lineage IV, which have independently evolved in two different geographic regions.IMPORTANCEUsing large-scale whole-genome sequence data fromErysipelothrix rhusiopathiaeisolates from a wide range of hosts and geographic origins, a recent study clarified the existence of three distinct clades (clades 1, 2, and 3) that are found across multiple continents and host species, representing both livestock and wildlife, and an “intermediate” clade between clade 2 and the dominant clade 3 within the species. In this study, we found that theE. rhusiopathiaeJapanese strains examined exhibited remarkably low levels of genetic diversity and confirmed that all of the Japanese and Chinese swine isolates examined in this study belong to clonal lineages within the intermediate clade. We report thatspaAgenotyping ofE. rhusiopathiaestrains is a practical alternative to whole-genome sequencing analysis of theE. rhusiopathiaeisolates from eastern Asian countries.


Sign in / Sign up

Export Citation Format

Share Document