scholarly journals The Meningococcal Adhesin NhhA Provokes Proinflammatory Responses in Macrophages via Toll-Like Receptor 4-Dependent and -Independent Pathways

2012 ◽  
Vol 80 (11) ◽  
pp. 4027-4033 ◽  
Author(s):  
Mikael Sjölinder ◽  
Georg Altenbacher ◽  
Xiao Wang ◽  
Yumin Gao ◽  
Charlotta Hansson ◽  
...  

ABSTRACTActivation of macrophages by Toll-like receptors (TLRs) and functionally related proteins is essential for host defense and innate immunity. TLRs recognize a wide variety of pathogen-associated molecules. Here, we demonstrate that the meningococcal outer membrane protein NhhA has immunostimulatory functions and triggers release of proinflammatory cytokines from macrophages. NhhA-induced cytokine release was found to proceed via two distinct pathways in RAW 264.7 macrophages. Interleukin-6 (IL-6) secretion was dependent on activation of TLR4 and required the TLR signaling adaptor protein MyD88. In contrast, release of tumor necrosis factor (TNF) was TLR4 and MyD88 independent. Both pathways involved NF-κB-dependent gene regulation. Using a PCR-based screen, we could identify additional targets of NhhA-dependent gene activation such as the cytokines and growth factors IL-1α, IL-1β, granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). In human monocyte-derived macrophages, G-CSF, GM-CSF, and IL-6 were found to be major targets of NhhA-dependent gene regulation. NhhA induced transcription of IL-6 and G-CSF mRNA via TLR4-dependent pathways, whereas GM-CSF transcription was induced via TLR4-independent pathways. These data provide new insights into the role of NhhA in host-pathogen interaction.

1987 ◽  
Vol 166 (5) ◽  
pp. 1436-1446 ◽  
Author(s):  
W Y Weiser ◽  
A Van Niel ◽  
S C Clark ◽  
J R David ◽  
H G Remold

Recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) obtained from cloned complementary Mo cell DNA and expressed in COS-1 cells activates cultured peripheral blood monocyte-derived macrophages in vitro to become cytotoxic for intracellular L. donovani. The antileishmanial effect of rGM-CSF, which can be completely neutralized by anti-rGM-CSF antiserum, is maximal after 36 h preincubation with the cultured macrophages, compared with that of rIFN-gamma, which reaches its maximum at 72 h of preincubation. The antileishmanial effect of GM-CSF as well as IFN-gamma is independent of detectable amounts of LPS and is not augmented by the addition of 10 or 50 ng/ml of LPS. Simultaneous administration of suboptimal doses of rGM-CSF and rIFN-gamma to monocyte-derived macrophages results in greater antileishmanial activity by these cells than administration of either lymphokine alone, although no enhancement of antileishmanial activity is observed when optimal doses of these two lymphokines are applied together.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3616-3621 ◽  
Author(s):  
JA Hamilton ◽  
GA Whitty ◽  
H Stanton ◽  
J Wojta ◽  
M Gallichio ◽  
...  

Macrophage colony-stimulating factor (M-CSF or CSF-1) and granulocyte- macrophage CSF (GM-CSF) have been shown to increase human monocyte urokinase-type plasminogen-activator (u-PA) activity with possible consequences for cell migration and tissue remodeling; because monocyte u-PA activity is likely to be controlled in part also by the PA inhibitors (PAIs) made by the cell, the effect of M-CSF and GM-CSF on human monocyte PAI-2 and PAI-1 synthesis was investigated. To this end, elutriation-purified human monocytes were treated in vitro with purified recombinant human M-CSF and GM-CSF, and PAI-2 and PAI-1 antigen and mRNA levels measured by specific enzyme-linked immunosorbent assays and Northern blot, respectively. Each CSF could enhance the protein and mRNA levels of PAI-2 and PAI-1 at similar concentrations for each product. This similar regulation of monocyte PAI expression in response to the CSFs contrasted with that found for the effects of lipopolysaccharide, transforming growth factor-beta and a glucocorticoid. Therefore, PAIs may be modulating the effects of the CSFs on monocyte u-PA activity at sites of inflammation and tissue remodeling.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3636-3646 ◽  
Author(s):  
Thamar B. van Dijk ◽  
Belinda Baltus ◽  
Eric Caldenhoven ◽  
Hiroshi Handa ◽  
Jan A.M. Raaijmakers ◽  
...  

High-affinity receptors for interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF) are composed of two distinct subunits, a ligand-specific  chain and a common β chain (βc). Whereas the mouse has two homologous β subunits (βc and βIL-3), in humans, only a single β chain is identified. We describe here the isolation and characterization of the gene encoding the human IL-3/IL-5/GM-CSF receptor β subunit. The gene spans about 25 kb and is divided into 14 exons, a structure very similar to that of the murine βc/βIL-3 genes. Surprisingly, we also found the remnants of a second βc chain gene directly downstream of βc. We identified a functional promoter that is active in the myeloid cell lines U937 and HL-60, but not in HeLa cells. The proximal promoter region, located from −103 to +33 bp, contains two GGAA consensus binding sites for members of the Ets family. Single mutation of those sites reduces promoter activity by 70% to 90%. The 5′ element specifically binds PU.1, whereas the 3′ element binds a yet-unidentified protein. These findings, together with the observation that cotransfection of PU.1 and other Ets family members enhances βc promoter activity in fibroblasts, reinforce the notion that GGAA elements play an important role in myeloid-specific gene regulation.


2019 ◽  
Vol 20 (20) ◽  
pp. 5113 ◽  
Author(s):  
Janice A. Layhadi ◽  
Samuel J. Fountain

Tissues differentially secrete multiple colony stimulating factors under conditions of homeostasis and inflammation, orientating recruited circulating monocytes to differentiate to macrophage with differing functional phenotypes. Here, we investigated ATP-evoked intracellular Ca2+ responses in human macrophage differentiated with macrophage colony-stimulating factor (M-CSF). Extracellular ATP evoked (EC50 13.3 ± 1.4 μM) robust biphasic intracellular Ca2+ responses that showed a dependency on both metabotropic (P2Y) and ionotropic (P2X) receptors. qRT-PCR and immunocytochemistry revealed the expression of P2Y1, P2Y2, P2Y6, P2Y11, P2Y13, P2X1, P2X4, P2X5, and P2X7. Pharmacological analysis revealed contribution of only P2X4 and P2Y11 to the Ca2+ response evoked by maximal ATP concentrations (100 µM). This study reveals the contribution of P2X4 and P2Y11 receptor activation to ATP-evoked intracellular Ca2+ responses, and makes comparison with macrophage differentiated using granulocyte colony-stimulating factor (GM-CSF).


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3636-3646 ◽  
Author(s):  
Thamar B. van Dijk ◽  
Belinda Baltus ◽  
Eric Caldenhoven ◽  
Hiroshi Handa ◽  
Jan A.M. Raaijmakers ◽  
...  

Abstract High-affinity receptors for interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF) are composed of two distinct subunits, a ligand-specific  chain and a common β chain (βc). Whereas the mouse has two homologous β subunits (βc and βIL-3), in humans, only a single β chain is identified. We describe here the isolation and characterization of the gene encoding the human IL-3/IL-5/GM-CSF receptor β subunit. The gene spans about 25 kb and is divided into 14 exons, a structure very similar to that of the murine βc/βIL-3 genes. Surprisingly, we also found the remnants of a second βc chain gene directly downstream of βc. We identified a functional promoter that is active in the myeloid cell lines U937 and HL-60, but not in HeLa cells. The proximal promoter region, located from −103 to +33 bp, contains two GGAA consensus binding sites for members of the Ets family. Single mutation of those sites reduces promoter activity by 70% to 90%. The 5′ element specifically binds PU.1, whereas the 3′ element binds a yet-unidentified protein. These findings, together with the observation that cotransfection of PU.1 and other Ets family members enhances βc promoter activity in fibroblasts, reinforce the notion that GGAA elements play an important role in myeloid-specific gene regulation.


Author(s):  
Petr Sláma

The aim of this study was to evaluate suitability of using Western Blot for detection of neutrophil apo­pto­sis and neutrophil apoptosis-related proteins, respectively. Neutrophils were isolated from blood of healthy adult donors and incubated with G-CSF (granulocyte colony stimulating factor), GM-CSF (granulocyte-macrophage colony stimulating factor), ATP (adenosine triphosphate) and FMLP (N-formyl-methionyl-leucyl-phenylalanine). The neutrophils were incubated 4, 8 and 20 hours at 37 °C. In this assay, an expression of Mcl-1 (myeloid cell leukemia 1), XIAP (X-linked inhibitor of apoptosis) and gelsolin was analysed by Western Blot method. The results showed that Western Blot is a suitable method for detection of neutrophil apoptosis-related proteins and detection of neutrophil apoptosis, respectively.


2003 ◽  
Vol 77 (23) ◽  
pp. 12630-12638 ◽  
Author(s):  
Tammra J. Warby ◽  
Suzanne M. Crowe ◽  
Anthony Jaworowski

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infects cells of the monocyte/macrophage lineage. While infection of macrophages by HIV-1 is generally not cytopathic, it does impair macrophage function. In this study, we examined the effect of HIV-1 infection on intracellular signaling in human monocyte-derived macrophages (MDM) stimulated with the growth factor granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF is an important growth factor for cells of both the macrophage and granulocyte lineages and enhances effector functions of these cells via the heterodimeric GM-CSF receptor (GM-CSFR). A major pathway which mediates the effects of GM-CSF on macrophages involves activation of the latent transcription factor STAT5A via a Janus kinase 2 (JAK2)-dependent pathway. We demonstrate that GM-CSF-induced activation of STAT5A is inhibited in MDM after infection in vitro with the laboratory-adapted R5 strain of HIV-1, HIV-1Ba-L, but not after infection with adenovirus. HIV-1 infection of MDM did not decrease the STAT5A or JAK2 mRNA level or STAT5A protein level or result in increased constitutive activation of STAT5A. Surface expression of either the α-chain or common βc-chain of GM-CSFR was also unaffected. We conclude that HIV-1 inhibits GM-CSF activation of STAT5A without affecting expression of the known components of the signaling pathway. These data provide further evidence of disruption of cellular signaling pathways after HIV-1 infection, which may contribute to immune dysfunction and HIV-1 pathogenesis.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3616-3621 ◽  
Author(s):  
JA Hamilton ◽  
GA Whitty ◽  
H Stanton ◽  
J Wojta ◽  
M Gallichio ◽  
...  

Abstract Macrophage colony-stimulating factor (M-CSF or CSF-1) and granulocyte- macrophage CSF (GM-CSF) have been shown to increase human monocyte urokinase-type plasminogen-activator (u-PA) activity with possible consequences for cell migration and tissue remodeling; because monocyte u-PA activity is likely to be controlled in part also by the PA inhibitors (PAIs) made by the cell, the effect of M-CSF and GM-CSF on human monocyte PAI-2 and PAI-1 synthesis was investigated. To this end, elutriation-purified human monocytes were treated in vitro with purified recombinant human M-CSF and GM-CSF, and PAI-2 and PAI-1 antigen and mRNA levels measured by specific enzyme-linked immunosorbent assays and Northern blot, respectively. Each CSF could enhance the protein and mRNA levels of PAI-2 and PAI-1 at similar concentrations for each product. This similar regulation of monocyte PAI expression in response to the CSFs contrasted with that found for the effects of lipopolysaccharide, transforming growth factor-beta and a glucocorticoid. Therefore, PAIs may be modulating the effects of the CSFs on monocyte u-PA activity at sites of inflammation and tissue remodeling.


Sign in / Sign up

Export Citation Format

Share Document