scholarly journals Transcriptional and translational responsiveness of the Neisseria gonorrhoeae type IV secretion system to conditions of host infections

2021 ◽  
Author(s):  
Melanie M. Callaghan ◽  
Amy K. Klimowicz ◽  
Abigail C. Shockey ◽  
John Kane ◽  
Caitlin S. Pepperell ◽  
...  

The type IV secretion system of Neisseria gonorrhoeae translocates single-stranded DNA into the extracellular space, facilitating horizontal gene transfer and initiating biofilm formation. Expression of this system has been observed to be low under laboratory conditions, and multiple levels of regulation have been identified. We used a translational fusion of lacZ to traD , the gene for the type IV secretion system coupling protein, to screen for increased type IV secretion system expression. We identified several physiologically relevant conditions, including surface adherence, decreased manganese or iron, and increased zinc or copper, which increase gonococcal type IV secretion system protein levels through transcriptional and/or translational mechanisms. These metal treatments are reminiscent of the conditions in the macrophage phagosome. The ferric uptake regulator, Fur, was found to repress traD transcript levels, but to also have a second role, acting to allow TraD protein levels to increase only in the absence of iron. To better understand type IV secretion system regulation during infection, we examined transcriptomic data from active urethral infection samples from five men. These data demonstrated differential expression of 20 of 21 type IV secretion system genes during infection, indicating upregulation of genes necessary for DNA secretion during host infection.

2021 ◽  
Author(s):  
Melanie M. Callaghan ◽  
Amy K. Klimowicz ◽  
Abigail C. Shockey ◽  
John Kane ◽  
Caitlin S. Pepperell ◽  
...  

AbstractThe type IV secretion system of Neisseria gonorrhoeae translocates single-stranded DNA into the extracellular space, facilitating horizontal gene transfer and initiating biofilm formation. Expression of this system has been observed to be low under laboratory conditions, and multiple levels of regulation have been identified. We used a translational fusion of lacZ to traD, the gene for the type IV secretion system coupling protein, to screen for increased type IV secretion system expression. We identified several physiologically relevant conditions, including surface adherence, decreased manganese or iron, and increased zinc or copper, which increase gonococcal type IV secretion system protein levels through transcriptional and/or translational mechanisms. These metal treatments are reminiscent of the conditions in the macrophage phagosome. The ferric uptake regulator, Fur, was found to repress traD transcript levels, but to also have a second role, acting to allow TraD protein levels to increase only in the absence of iron. To better understand type IV secretion system regulation during infection, we examined transcriptomic data from active urethral infection samples from five men. These data demonstrated differential expression of 20 of 21 type IV secretion system genes during infection, indicating upregulation of genes necessary for DNA secretion during host infection.


2001 ◽  
Vol 277 (9) ◽  
pp. 7556-7566 ◽  
Author(s):  
F. Xavier Gomis-Rüth ◽  
Gabriel Moncalián ◽  
Fernando de la Cruz ◽  
Miquel Coll

2007 ◽  
Vol 189 (15) ◽  
pp. 5421-5428 ◽  
Author(s):  
Petra L. Kohler ◽  
Holly L. Hamilton ◽  
Karen Cloud-Hansen ◽  
Joseph P. Dillard

ABSTRACT Type IV secretion systems require peptidoglycan lytic transglycosylases for efficient secretion, but the function of these enzymes is not clear. The type IV secretion system gene cluster of Neisseria gonorrhoeae encodes two peptidoglycan transglycosylase homologues. One, LtgX, is similar to peptidoglycan transglycosylases from other type IV secretion systems. The other, AtlA, is similar to endolysins from bacteriophages and is not similar to any described type IV secretion component. We characterized the enzymatic function of AtlA in order to examine its role in the type IV secretion system. Purified AtlA was found to degrade macromolecular peptidoglycan and to produce 1,6-anhydro peptidoglycan monomers, characteristic of lytic transglycosylase activity. We found that AtlA can functionally replace the lambda endolysin to lyse Escherichia coli. In contrast, a sensitive measure of lysis demonstrated that AtlA does not lyse gonococci expressing it or gonococci cocultured with an AtlA-expressing strain. The gonococcal type IV secretion system secretes DNA during growth. A deletion of ltgX or a substitution in the putative active site of AtlA severely decreased DNA secretion. These results indicate that AtlA and LtgX are actively involved in type IV secretion and that AtlA is not involved in lysis of gonococci to release DNA. This is the first demonstration that a type IV secretion peptidoglycanase has lytic transglycosylase activity. These data show that AtlA plays a role in type IV secretion of DNA that requires peptidoglycan breakdown without cell lysis.


2010 ◽  
Vol 192 (7) ◽  
pp. 1912-1920 ◽  
Author(s):  
Wilmara Salgado-Pabón ◽  
Ying Du ◽  
Kathleen T. Hackett ◽  
Katelynn M. Lyons ◽  
Cindy Grove Arvidson ◽  
...  

ABSTRACT Neisseria gonorrhoeae produces a type IV secretion system that secretes chromosomal DNA. The secreted DNA is active in the transformation of other gonococci in the population and may act to transfer antibiotic resistance genes and variant alleles for surface antigens, as well as other genes. We observed that gonococcal variants that produced type IV pili secreted more DNA than variants that were nonpiliated, suggesting that the process may be regulated. Using microarray analysis, we found that a piliated strain showed increased expression of the gene for the putative type IV secretion coupling protein TraD, whereas a nonpiliated variant showed increased expression of genes for transcriptional and translational machinery, consistent with its higher growth rate compared to that of the piliated strain. These results suggested that type IV secretion might be controlled by either traD expression or growth rate. A mutant with a deletion in traD was found to be deficient in DNA secretion. Further mutation and complementation analysis indicated that traD is transcriptionally and translationally coupled to traI, which encodes the type IV secretion relaxase. We were able to increase DNA secretion in a nonpiliated strain by inserting a gene cassette with a strong promoter to drive the expression of the putative operon containing traI and traD. Together, these data suggest a model in which the type IV secretion system apparatus is made constitutively, while its activity is controlled through regulation of traD and traI.


2012 ◽  
Vol 85 (2) ◽  
pp. 378-391 ◽  
Author(s):  
Carr D. Vincent ◽  
Jonathan R. Friedman ◽  
Kwang Cheol Jeong ◽  
Molly C. Sutherland ◽  
Joseph P. Vogel

2001 ◽  
Vol 120 (5) ◽  
pp. A652-A653
Author(s):  
Y HIRATA ◽  
S MAEDA ◽  
Y MITUNO ◽  
M AKANUMA ◽  
T KAWABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document