Genetic background affects the mucosal SIgA levels, parasite burden, lung inflammation and susceptibility of male mice to Ascaris suum infection.

2021 ◽  
Author(s):  
Luciana Maria de Oliveira ◽  
Denise Silva Nogueira ◽  
Ricardo Marcelo Geraldi ◽  
Fernando Sérgio Barbosa ◽  
Chiara Cássia Oliveira Amorim ◽  
...  

Ascariasis is a neglected tropical disease, widespread in the world and causing important socioeconomic impacts. The presence of various stages of worm development in the pulmonary and intestinal mucosa induces a humoral and cellular immune response. However, although there is much evidence of the protective role of mucosal immunity against various pathogens, including helminthes, there is still a gap in the knowledge about the immune response and the mechanisms of action that are involved in protection against diseases, especially in the initial phase of ascariasis. Then, the aim of this study was to evaluate the kinetic aspects of the immune parasitological parameters in intestinal and pulmonary mucosa in male mice with early ascariasis. Therefore, two mice strains showed a different susceptibility to ascariasis (BALB/c and C57BL6/j), when experimentally infected with 2,500 infective eggs of Ascaris suum from time-point 0 and the immune parasitological parameters evaluated each two days after infection, during the period of 12 days. The results were suggestive of a synergetic action of intestinal and pulmonary SIgA contributing for the protection against early ascariasis by reducing the amount of migrating larval as well as the influx of leukocytes in the lung and the consequent impair of the pulmonary capacity.

2012 ◽  
Vol 35 (4) ◽  
pp. 805-811
Author(s):  
Dorria A.M. Zaghloul ◽  
Esam Salah Kamel ◽  
Hekmat O. Abd el-Aziz ◽  
Mohammed A. Mahmoud

Author(s):  
Kristen Orumaa ◽  
Margaret R. Dunne

AbstractCOVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.


2012 ◽  
Vol 64 (9) ◽  
pp. 2878-2886 ◽  
Author(s):  
Hilène Lin ◽  
Marie-Dominique Ah Kioon ◽  
Claude Lalou ◽  
Jerome Larghero ◽  
Jean-Marie Launay ◽  
...  

2019 ◽  
Vol 20 (2) ◽  
pp. 271 ◽  
Author(s):  
Przemyslaw Zdziarski

Although the existing paradigm states that cytomegalovirus (CMV) reactivation is under the control of the cellular immune response, the role of humoral and innate counterparts are underestimated. The study analyzed the host–virus interaction i.e., CMV-immune response evolution during infection in three different clinical situations: (1) immunodeficient CMV-positive human leukocyte antigen (HLA)-matched bone marrow recipients after immunoablative conditioning as well as immunocompetent, (2) adult, and (3) infant with primary immune response. In the first situation, a fast and significant decrease of specific immunity was observed but reconstitution of marrow-derived B and natural killer (NK) cells was observed prior to thymic origin of T cells. The lowest CMV-IgG (93.2 RU/mL) was found just before CMV viremia. It is noteworthy that the sole and exclusive factor of CMV-specific immune response is a residual recipient antibody class IgG. The CMV-quantiferon increase was detected later, but in the first phase, phytohemagglutinin (PHA)-induced IFN-γ release was significantly lower than that of CMV-induced (“indeterminate” results). It corresponds with the increase of NK cells at the top of lymphocyte reconstitution and undetected CMV-specific CD8 cells using a pentamer technique. In immunocompetent adult (CMV-negative donor), the cellular and humoral immune response increased in a parallel manner, but symptoms of CMV mononucleosis persisted until the increase of specific IgG. During infancy, the decrease of the maternal CMV-IgG level to 89.08 RU/mL followed by clinical sequel, i.e., CMV replication, were described. My observations shed light on a unique host-CMV interaction and CMV-IgG role: they indicate that its significant decrease predicts CMV replication. Before primary cellular immune response development, the high level of residual CMV-IgG (about >100 R/mL) from mother or recipient prevents virus reactivation. The innate immune response and NK-dependent IFN-secretion should be further investigated.


2006 ◽  
Vol 52 (7) ◽  
pp. 711-716 ◽  
Author(s):  
Marcela B. Figueiredo ◽  
Daniele P. Castro ◽  
Nadir F. S. Nogueira ◽  
Eloi S. Garcia ◽  
Patrícia Azambuja

Virology ◽  
2017 ◽  
Vol 512 ◽  
pp. 144-150 ◽  
Author(s):  
Devi Rajan ◽  
Raghavan Chinnadurai ◽  
Evan L. O'Keefe ◽  
Seyhan Boyoglu-Barnum ◽  
Sean O. Todd ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document