Anaplasma phagocytophilum Asp14 Is an Invasin That Interacts with Mammalian Host Cells via Its C Terminus To Facilitate Infection
Anaplasma phagocytophilum, a member of the familyAnaplasmataceae, is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis. The life cycle ofA. phagocytophilumis biphasic, transitioning between the noninfectious reticulate cell (RC) and infectious dense-cored (DC) forms. We analyzed the bacterium's DC surface proteome by selective biotinylation of surface proteins, NeutrAvidin affinity purification, and mass spectrometry. Transcriptional profiling of selected outer membrane protein candidates over the course of infection revealed thataph_0248(designatedasp14[14-kDaA. phagocytophilumsurface protein]) expression was upregulated the most duringA. phagocytophilumcellular invasion.asp14transcription was induced during transmission feeding ofA. phagocytophilum-infected ticks on mice and was upregulated when the bacterium engaged its receptor, P-selectin glycoprotein ligand 1. Asp14 localized to theA. phagocytophilumsurface and was expressed duringin vivoinfection. Treating DC organisms with Asp14 antiserum or preincubating mammalian host cells with glutathioneS-transferase (GST)–Asp14 significantly inhibited infection of host cells. Moreover, preincubating host cells with GST-tagged forms of both Asp14 and outer membrane protein A, anotherA. phagocytophiluminvasin, pronouncedly reduced infection relative to treatment with either protein alone. The Asp14 domain that is sufficient for cellular adherence and invasion lies within the C-terminal 12 to 24 amino acids and is conserved among otherAnaplasmaandEhrlichiaspecies. These results identify Asp14 as anA. phagocytophilumsurface protein that is critical for infection, delineate its invasion domain, and demonstrate the potential of targeting Asp14 in concert with OmpA for protecting against infection byA. phagocytophilumand otherAnaplasmataceaepathogens.