scholarly journals Anaplasma phagocytophilum Asp14 Is an Invasin That Interacts with Mammalian Host Cells via Its C Terminus To Facilitate Infection

2012 ◽  
Vol 81 (1) ◽  
pp. 65-79 ◽  
Author(s):  
Amandeep Kahlon ◽  
Nore Ojogun ◽  
Stephanie A. Ragland ◽  
David Seidman ◽  
Matthew J. Troese ◽  
...  

Anaplasma phagocytophilum, a member of the familyAnaplasmataceae, is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis. The life cycle ofA. phagocytophilumis biphasic, transitioning between the noninfectious reticulate cell (RC) and infectious dense-cored (DC) forms. We analyzed the bacterium's DC surface proteome by selective biotinylation of surface proteins, NeutrAvidin affinity purification, and mass spectrometry. Transcriptional profiling of selected outer membrane protein candidates over the course of infection revealed thataph_0248(designatedasp14[14-kDaA. phagocytophilumsurface protein]) expression was upregulated the most duringA. phagocytophilumcellular invasion.asp14transcription was induced during transmission feeding ofA. phagocytophilum-infected ticks on mice and was upregulated when the bacterium engaged its receptor, P-selectin glycoprotein ligand 1. Asp14 localized to theA. phagocytophilumsurface and was expressed duringin vivoinfection. Treating DC organisms with Asp14 antiserum or preincubating mammalian host cells with glutathioneS-transferase (GST)–Asp14 significantly inhibited infection of host cells. Moreover, preincubating host cells with GST-tagged forms of both Asp14 and outer membrane protein A, anotherA. phagocytophiluminvasin, pronouncedly reduced infection relative to treatment with either protein alone. The Asp14 domain that is sufficient for cellular adherence and invasion lies within the C-terminal 12 to 24 amino acids and is conserved among otherAnaplasmaandEhrlichiaspecies. These results identify Asp14 as anA. phagocytophilumsurface protein that is critical for infection, delineate its invasion domain, and demonstrate the potential of targeting Asp14 in concert with OmpA for protecting against infection byA. phagocytophilumand otherAnaplasmataceaepathogens.

2012 ◽  
Vol 80 (11) ◽  
pp. 3748-3760 ◽  
Author(s):  
Nore Ojogun ◽  
Amandeep Kahlon ◽  
Stephanie A. Ragland ◽  
Matthew J. Troese ◽  
Juliana E. Mastronunzio ◽  
...  

ABSTRACTAnaplasma phagocytophilumis the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis (HGA).A. phagocytophilumbinding to sialyl Lewis x (sLex) and other sialylated glycans that decorate P selectin glycoprotein 1 (PSGL-1) and other glycoproteins is critical for infection of mammalian host cells. Here, we demonstrate the importance ofA. phagocytophilumouter membrane protein A (OmpA) APH_0338 in infection of mammalian host cells. OmpA is transcriptionally induced during transmission feeding ofA. phagocytophilum-infected ticks on mice and is upregulated during invasion of HL-60 cells. OmpA is presented on the pathogen's surface. Sera from HGA patients and experimentally infected mice recognize recombinant OmpA. Pretreatment ofA. phagocytophilumorganisms with OmpA antiserum reduces their abilities to infect HL-60 cells. The OmpA N-terminal region is predicted to contain the protein's extracellular domain. GlutathioneS-transferase (GST)-tagged versions of OmpA and OmpA amino acids 19 to 74 (OmpA19-74) but not OmpA75-205bind to, and competitively inhibitA. phagocytophiluminfection of, host cells. Pretreatment of host cells with sialidase or trypsin reduces or nearly eliminates, respectively, GST-OmpA adhesion. Therefore, OmpA interacts with sialylated glycoproteins. This study identifies the firstA. phagocytophilumadhesin-receptor pair and delineates the region of OmpA that is critical for infection.


2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Kathryn S. Hebert ◽  
David Seidman ◽  
Aminat T. Oki ◽  
Jerilyn Izac ◽  
Sarvani Emani ◽  
...  

ABSTRACT Anaplasma marginale causes bovine anaplasmosis, a debilitating and potentially fatal tick-borne infection of cattle. Because A. marginale is an obligate intracellular organism, its adhesins that mediate entry into host cells are essential for survival. Here, we demonstrate that A. marginale outer membrane protein A (AmOmpA; AM854) contributes to the invasion of mammalian and tick host cells. AmOmpA exhibits predicted structural homology to OmpA of A. phagocytophilum (ApOmpA), an adhesin that uses key lysine and glycine residues to interact with α2,3-sialylated and α1,3-fucosylated glycan receptors, including 6-sulfo-sialyl Lewis x (6-sulfo-sLex). Antisera against AmOmpA or its predicted binding domain inhibits A. marginale infection of host cells. Residues G55 and K58 are contributory, and K59 is essential for recombinant AmOmpA to bind to host cells. Enzymatic removal of α2,3-sialic acid and α1,3-fucose residues from host cell surfaces makes them less supportive of AmOmpA binding. AmOmpA is both an adhesin and an invasin, as coating inert beads with it confers adhesiveness and invasiveness. Recombinant forms of AmOmpA and ApOmpA competitively antagonize A. marginale infection of host cells, but a monoclonal antibody against 6-sulfo-sLex fails to inhibit AmOmpA adhesion and A. marginale infection. Thus, the two OmpA proteins bind related but structurally distinct receptors. This study provides a detailed understanding of AmOmpA function, identifies its essential residues that can be targeted by blocking antibody to reduce infection, and determines that it binds to one or more α2,3-sialylated and α1,3-fucosylated glycan receptors that are unique from those targeted by ApOmpA.


2012 ◽  
Vol 81 (1) ◽  
pp. 303-310 ◽  
Author(s):  
Paola Massari ◽  
Deana N. Toussi ◽  
Delia F. Tifrea ◽  
Luis M. de la Maza

Chlamydia trachomatisis the most common sexually transmitted bacterial pathogen and the etiologic agent of blinding trachoma. Intracellular signaling pathways leading to host cell inflammation and innate immunity toChlamydiainclude those mediated by Toll-like receptors (TLRs) and nucleotide binding oligomerization domain 1 (Nod1) protein. In epithelial cells, TLR-dependent signaling contributes to local immune responses via induction of inflammatory mediators. There is evidence that TLR3, TLR4, and, particularly, TLR2 are critical forChlamydia-mediated host cell activation and pathology. Despite the importance of TLR2, major chlamydial TLR2 antigens have not been identified so far. Numerous bacterial porins are known TLR2 agonists, i.e., porins fromNeisseriae,Shigella,Salmonella,Haemophilus influenzae, andFusobacterium nucleatum, which share structural and functional similarities with the chlamydial major outer membrane protein (MOMP), a strong antigen candidate for a potential vaccine againstC. trachomatis. We describe the ability of purified, detergent-free MOMP to signal via TLR2in vitroin TLR-overexpressing cells and TLR2-competent human reproductive tract epithelial cell lines. Using MOMP formed in pure protein micelles (proteosomes), we show the induction of TLR2-dependent interleukin-8 (IL-8) and IL-6 secretionin vitro, the involvement of TLR1 as a TLR2 coreceptor, and the activation of both NF-κB and mitogen-activated protein (MAP) kinase intracellular pathways. Interestingly, MOMP proteosomes induce cytokine secretion in endocervical epithelial cells (End/E6E7) but not in urethral epithelial cells (THUECs). A detailed understanding of the TLR2-dependent molecular mechanisms that characterize the effect of MOMP proteosomes on host cells may provide new insights for its successful development as an immunotherapeutic target againstChlamydia.


1998 ◽  
Vol 42 (11) ◽  
pp. 2870-2876 ◽  
Author(s):  
P. Christian Lück ◽  
Jürgen W. Schmitt ◽  
Arne Hengerer ◽  
Jürgen H. Helbig

ABSTRACT We determined the MICs of ampicillin, ciprofloxacin, erythromycin, imipenem, and rifampin for two clinical isolates of Legionella pneumophila serogroup 1 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and by quantitative culture. To test the influence of subinhibitory concentrations (sub-MICs) of antimicrobial agents on Legionella uptake into Acanthamoeba castellanii and U937 macrophage-like cells, both strains were pretreated with 0.25 MICs of the antibiotics for 24 h. In comparison to that for the untreated control, subinhibitory concentrations of antibiotics significantly reducedLegionella uptake into the host cells. Measurement of the binding of monoclonal antibodies against several Legionellaantigens by enzyme-linked immunoassays indicated that sub-MIC antibiotic treatment reduced the expression of the macrophage infectivity potentiator protein (Mip), the Hsp 60 protein, the outer membrane protein (OmpM), an as-yet-uncharacterized protein of 55 kDa, and a few lipopolysaccharide (LPS) epitopes. In contrast, the expression of some LPS epitopes recognized by monoclonal antibodies 8/5 and 30/4 as well as a 45-kDa protein, a 58-kDa protein, and the major outer membrane protein (OmpS) remained unaffected.


2012 ◽  
Vol 80 (7) ◽  
pp. 2286-2296 ◽  
Author(s):  
William E. Sause ◽  
Andrea R. Castillo ◽  
Karen M. Ottemann

ABSTRACTThe human pathogenHelicobacter pyloriemploys a diverse collection of outer membrane proteins to colonize, persist, and drive disease within the acidic gastric environment. In this study, we sought to elucidate the function of the host-induced geneHP0289, which encodes an uncharacterized outer membrane protein. We first generated an isogenicH. pylorimutant that lacksHP0289and found that the mutant has a colonization defect in single-strain infections and is greatly outcompeted in mouse coinfection experiments with wild-typeH. pylori. Furthermore, we used protease assays and biochemical fractionation coupled with an HP0289-targeted peptide antibody to verify that the HP0289 protein resides in the outer membrane. Our previous findings showed that theHP0289promoter is upregulated in the mouse stomach, and here we demonstrate thatHP0289expression is induced under acidic conditions in an ArsRS-dependent manner. Finally, we have shown that theHP0289mutant induces greater expression of the chemokine interleukin-8 (IL-8) and the cytokine tumor necrosis factor alpha (TNF-α) in gastric carcinoma cells (AGS). Similarly, transcription of the IL-8 homolog keratinocyte-derived chemokine (KC) is elevated in murine infections with the HP0289 mutant than in murine infections with wild-typeH. pylori. On the basis of this phenotype, we renamed HP0289 ImaA forimmunomodulatoryautotransporter protein. Our work has revealed that genes inducedin vivoplay an important role inH. pyloripathogenesis. Specifically, the outer membrane protein ImaA modulates a component of the host inflammatory response, and thus may allowH. pylorito fine tune the host immune response based on ImaA expression.


2006 ◽  
Vol 74 (11) ◽  
pp. 6429-6437 ◽  
Author(s):  
Anthony F. Barbet ◽  
Anna M. Lundgren ◽  
A. Rick Alleman ◽  
Snorre Stuen ◽  
Anneli Bjöersdorff ◽  
...  

ABSTRACT Anaplasma phagocytophilum, a recently reclassified bacteria in the order Rickettsiales, infects many different animal species and causes an emerging tick-borne disease of humans. The genome contains a large number of related genes and gene fragments encoding partial or apparently full-length outer membrane protein MSP2 (P44). Previous data using strains isolated from humans in the United States suggest that antigenic diversity results from RecF-mediated conversion of a single MSP2 (P44) expression site by partially homologous donor sequences. However, whether similar mechanisms operate in naturally infected animal species and the extent of global diversity in MSP2 (P44) are unknown. We analyzed the structure and diversity of the MSP2 (P44) expression site in strains derived from the United States and Europe and from infections of different animal species, including wildlife reservoirs. The results show that a syntenic expression site is present in all strains of A. phagocytophilum investigated. This genomic locus contained diverse MSP2 (P44) variants in all infected animals sampled, and variants also differed at different time points during infection. Although similar variants were found among different populations of U.S. origin, there was little sequence identity between U.S. strain variants (including genomic copies from a completely sequenced U.S. strain) and expression site variants infecting sheep and dogs in Norway and Sweden. Finally, the possibility that combinatorial mechanisms can generate additional diversity beyond the basic donor sequence repertoire is supported by the observation of shared sequence blocks throughout the MSP2 (P44) hypervariable region in reservoir hosts. These data suggest similar genetic mechanisms for A. phagocytophilum variation in all hosts but worldwide diversity of the MSP2 (P44) outer membrane protein.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Amin Addetia ◽  
Michelle J. Lin ◽  
Quynh Phung ◽  
Hong Xie ◽  
Meei-Li Huang ◽  
...  

ABSTRACT Immune evasion and disease progression of Treponema pallidum subsp. pallidum are associated with sequence diversity in the hypervariable outer membrane protein TprK. Previous attempts to study variation within TprK have sequenced at depths insufficient to fully appreciate the hypervariable nature of the protein, failed to establish linkage between the protein’s seven variable regions, or were conducted on isolates passed through rabbits. As a consequence, a complete profile of tprK during infection in the human host is still lacking. Furthermore, prior studies examining how T. pallidum subsp. pallidum uses its repertoire of genomic donor sites to generate diversity within the variable regions of the tprK have yielded a partial understanding of this process due to the limited number of tprK alleles examined. In this study, we used short- and long-read deep sequencing to directly characterize full-length tprK alleles from T. pallidum subsp. pallidum collected from early lesions of patients attending two sexually transmitted infection clinics in Italy. We demonstrate that strains collected from cases of secondary syphilis contain significantly more unique variable region sequences and full-length TprK sequences than those from cases of primary syphilis. Our data, combined with recent data available on Chinese T. pallidum subsp. pallidum specimens, show the near-complete absence of overlap in TprK sequences among the 41 specimens profiled to date. We further estimate that the potential antigenic variability carried by TprK rivals that of current estimates of the human adaptive immune system. These data underscore the immunoevasive ability of TprK that allows T. pallidum subsp. pallidum to establish lifelong infection. IMPORTANCE Syphilis continues to be a significant public health issue in both low- and high-income countries, including the United States where the rate of syphilis infection has increased over the past 5 years. Treponema pallidum subsp. pallidum, the causative agent of syphilis, carries the outer membrane protein TprK that undergoes segmental gene conversion to constantly create new sequences. We performed full-length deep sequencing of TprK to examine TprK diversity in clinical T. pallidum subsp. pallidum strains. We then combined our results with data from all samples for which TprK deep sequencing results were available. We found almost no overlap in TprK sequences between different patients. Moreover, our data allowed us to estimate the total number of TprK variants that T. pallidum subsp. pallidum can potentially generate. Our results support how the T. pallidum subsp. pallidum TprK antigenic variation system is an equal adversary of the human immune system leading to pathogen persistence in the host.


2011 ◽  
Vol 18 (5) ◽  
pp. 724-729 ◽  
Author(s):  
Zengzu Lai ◽  
John R. Schreiber

ABSTRACTBacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. TheHaemophilus influenzaetype b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM197conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM197conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.


2016 ◽  
Vol 82 (6) ◽  
pp. 1933-1944 ◽  
Author(s):  
Hong Zhou ◽  
Xia Wang ◽  
Tengteng Yang ◽  
Weixin Zhang ◽  
Guanjun Chen ◽  
...  

ABSTRACTCytophaga hutchinsoniispecializes in cellulose digestion by employing a collection of novel cell-associated proteins. Here, we identified a novel gene locus, CHU_1276, that is essential forC. hutchinsoniicellulose utilization. Disruption of CHU_1276 inC. hutchinsoniiresulted in complete deficiency in cellulose degradation, as well as compromised assimilation of cellobiose or glucose at a low concentration. Further analysis showed that CHU_1276 was an outer membrane protein that could be induced by cellulose and low concentrations of glucose. Transcriptional profiling revealed that CHU_1276 exerted a profound effect on the genome-wide response to both glucose and Avicel and that the mutant lacking CHU_1276 displayed expression profiles very different from those of the wild-type strain under different culture conditions. Specifically, comparison of their transcriptional responses to cellulose led to the identification of a gene set potentially regulated by CHU_1276. These results suggest that CHU_1276 plays an essential role in cellulose utilization, probably by coordinating the extracellular hydrolysis of cellulose substrate with the intracellular uptake of the hydrolysis product inC. hutchinsonii.


2018 ◽  
Vol 85 (5) ◽  
Author(s):  
Xia Wang ◽  
Weixin Zhang ◽  
Hong Zhou ◽  
Guanjun Chen ◽  
Weifeng Liu

ABSTRACTThe common soil cellulolytic bacterium known asCytophaga hutchinsoniimakes use of a unique but poorly understood strategy in order to utilize cellulose. While several genes have been identified as being an active part of the utilization of cellulose, the mechanism(s) by whichC. hutchinsoniiboth (i) senses its environment and (ii) regulates the expression of those genes are not as yet known. In this study, we identified and characterized the geneCHU_3097encoding an extracytoplasmic function (ECF) σ factor (σcel1), the disruption of which compromisedC. hutchinsoniicellulose assimilation to a large degree. The σcel1and its putative partner anti-σcel1, encoded by theCHU_3096gene found immediately downstream fromCHU_3097, copurifiedin vitro. The σcel1was discovered to be associated with inner membrane when cells were cultured on glucose and yet was partially released from the membrane in response to cellulose. This release was found to occur on glucose when the anti-σcel1was absent. Transcriptome analyses found a σcel1-regulated, cellulose-responsive gene regulon, within which an outer membrane protein encoding the geneCHU_1276, essential for cellulose utilization, was discovered to be significantly downregulated byCHU_3097disruption. The expression of CHU_1276 almost fully restored cellulose utilization to theCHU_3097mutant, demonstrating that CHU_1276 represents a critical regulatory target of σcel1. In this way, our study provided insights into the role of an ECF σ factor in coordinating the cellulolytic response ofC. hutchinsonii.IMPORTANCEThe common cellulolytic bacteriumCytophaga hutchinsoniiuses a unique but poorly understood strategy in order to make use of cellulose. Throughout the process of cellulosic biomass breakdown, outer membrane proteins are thought to play key roles; this is evidenced by CHU_1276, which is required for the utilization of cellulose. However, the regulatory mechanism of its expression is not yet known. We found and characterized an extracytoplasmic function σ factor that is involved in coordinating the cellulolytic response ofC. hutchinsoniiby directly regulating the expression ofCHU_1276. This study makes a contribution to our understanding of the regulatory mechanism used byC. hutchinsoniiin order to adjust its genetic programs and so deal with novel environmental cues.


Sign in / Sign up

Export Citation Format

Share Document