scholarly journals Broad-Spectrum Activity against Bacterial Mastitis Pathogens and Activation of Mammary Epithelial Cells Support a Protective Role of Neutrophil Cathelicidins in Bovine Mastitis

2010 ◽  
Vol 78 (4) ◽  
pp. 1781-1788 ◽  
Author(s):  
Linda Tomasinsig ◽  
Gennyfer De Conti ◽  
Barbara Skerlavaj ◽  
Renata Piccinini ◽  
Maria Mazzilli ◽  
...  

ABSTRACT Cathelicidins are peptide components of the innate immune system of mammals. Apart from exerting a direct antibiotic activity, they can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied, but there is a lack of published information on their expression and activities in the context of mastitis. The aims of this study were to investigate the expression of the bovine cathelicidins BMAP-27, BMAP-28, Bac5, and indolicidin in healthy and infected mammary tissue and in lipopolysaccharide (LPS)-treated cells, to determine their activities against bacteria isolated from bovine mastitis, and to examine their potentials to trigger defense responses in bovine mammary cells. The genes were found to be upregulated in LPS-stimulated neutrophils, but not in infected quarters or epithelial cells. All peptides showed a variably broad spectrum of activity against 28 bacterial isolates from bovine mastitis (MIC values, 0.5 to 32 μM), some of which were antibiotic resistant. The activity of each peptide was significantly enhanced when it was pairwise tested with the other peptides, reaching the synergy threshold when indolicidin was present. The bactericidal activity was sensitive to milk components; BMAP-27 and -28 were highly effective in mastitic bovine milk and inhibited in milk from healthy cows. Both peptides were also active in whey and in blood serum and triggered the expression of tumor necrosis factor alpha (TNF-α) in bovine mammary epithelial cells. Our results indicate multiple roles for the bovine cathelicidins in mastitis, with complementary and mutually enhanced antimicrobial activities against causative pathogens and the capacity to activate host cells.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Doreen Becker ◽  
Rosemarie Weikard ◽  
Frieder Hadlich ◽  
Christa Kühn

AbstractBovine mammary function at molecular level is often studied using mammary tissue or primary bovine mammary epithelial cells (pbMECs). However, bulk tissue and primary cells are heterogeneous with respect to cell populations, adding further transcriptional variation in addition to genetic background. Thus, understanding of the variation in gene expression profiles of cell populations and their effect on function are limited. To investigate the mononuclear cell composition in bovine milk, we analyzed a single-cell suspension from a milk sample. Additionally, we harvested cultured pbMECs to characterize gene expression in a homogeneous cell population. Using the Drop-seq technology, we generated single-cell RNA datasets of somatic milk cells and pbMECs. The final datasets after quality control filtering contained 7,119 and 10,549 cells, respectively. The pbMECs formed 14 indefinite clusters displaying intrapopulation heterogeneity, whereas the milk cells formed 14 more distinct clusters. Our datasets constitute a molecular cell atlas that provides a basis for future studies of milk cell composition and gene expression, and could serve as reference datasets for milk cell analysis.


2005 ◽  
Vol 45 (8) ◽  
pp. 757 ◽  
Author(s):  
C. Gray ◽  
Y. Strandberg ◽  
L. Donaldson ◽  
R. L. Tellam

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.


2020 ◽  
Vol 103 (4) ◽  
pp. 3493-3504
Author(s):  
Jia Cheng ◽  
Jv Zhang ◽  
Bo Han ◽  
Herman W. Barkema ◽  
Eduardo R. Cobo ◽  
...  

2020 ◽  
Vol 87 (3) ◽  
pp. 349-355
Author(s):  
Xinyang Fan ◽  
Lihua Qiu ◽  
Xiaohong Teng ◽  
Yongyun Zhang ◽  
Yongwang Miao

AbstractWe hypothesized that insulin-induced gene 1 (INSIG1) affects milk fat synthesis in buffalo. For this reason, the protein abundance of INSIG1 in the mammary tissue of buffalo during the peak period of lactation and dry-off period was evaluated. The results showed that the expression of INSIG1 at the peak of lactation was lower than that in the dry-off period. To explore the role of INSIG1 in milk fat synthesis, the buffalo mammary epithelial cells (BMECs) were isolated and purified from buffalo mammary tissue, and INSIG1 gene were overexpressed and knocked down by constructing the recombinant lentivirus vector of INSIG1 gene and transfecting into BMECs. Results revealed that INSIG1 overexpression decreased the expression of INSIG2, SREBP, PPARG, SCD, GPAM, DGAT2 and AGPAT6, which led to reduction of triglycerides (TAG) content in the cell. In contrast, knockdown of INSIG1 had a positive effect on mRNA expression of the above genes. Overall, the data provide strong support for a key role of INSIG1 in the regulation of milk fat synthesis in BMECs.


1989 ◽  
Vol 123 (2) ◽  
pp. 319-326 ◽  
Author(s):  
S. J. Winder ◽  
A. Turvey ◽  
I. A. Forsyth

ABSTRACT Ovine mammary epithelial cell clumps (30–90 μm) were plated onto attached gels of rat tail collagen in serum-free medium. Synthesis of DNA by these cultures could be stimulated by insulin-like growth factor-I (IGF-I) with a median effective dose of 5 μg/l, irrespective of stage of pregnancy. The time-course of response, however, was significantly slower in cells prepared from mammary tissue of non-pregnant and early pregnant sheep compared with sheep later in pregnancy. IGF-II had approximately 10% of the potency of IGF-I in stimulating DNA synthesis. Insulin acted over a wide concentration range and produced a maximum rate of stimulation not significantly different from that produced by IGF-I. These results are consistent with actions through the type-I IGF receptor although insulin may also act through its own receptor, possibly stimulating local IGF-I production. It is concluded that IGF-I is an important mitogen for ovine mammary epithelial cells. Journal of Endocrinology (1989) 123, 319–326


1986 ◽  
Vol 109 (2) ◽  
pp. 263-274 ◽  
Author(s):  
G. Thordarson ◽  
R. Villalobos ◽  
P. Colosi ◽  
J. Southard ◽  
L. Ogren ◽  
...  

ABSTRACT The ability of mouse placental lactogen (mPL), mouse prolactin (mPRL), mouse GH (mGH) and ovine prolactin (oPRL) to stimulate synthesis of α-lactalbumin was tested in a primary culture of mouse mammary gland epithelial cells. Mammary tissue was obtained from 10-day pregnant Swiss Webster mice, enzymatically dissociated and the cells were cultured on floating collagen gels for 5 days. The basic culture medium consisted of Nutrient Mixture F12/Dulbecco's Modified Eagle's Medium (1:1, v/v), containing 10 mg insulin/1, 5 mg cortisol/l, 10 μg epidermal growth factor/l, 5 g bovine serum albumin/l and 50 mg gentamycin/l. Mouse PL, mPRL, mGH and oPRL were added to the basic medium in concentrations from l μg/l to l mg/l. Accumulation of α-lactalbumin in the culture medium was measured. For that purpose, mouse α-lactalbumin was purified from mammary tissue obtained from lactating Swiss Webster mice and a radioimmunoassay was developed. Mouse PL, mPRL and oPRL stimulated a dose-dependent increase in α-lactalbumin secretion. Mouse GH also caused a significant, but dose-independent, increase in α-lactalbumin secretion. Mouse PL showed the greatest activity in stimulating α-lactalbumin secretion. It was concluded that mPL is an important lactogenic hormone in the latter half of pregnancy in the mouse, when circulating mPRL concentrations are low. J. Endocr. (1986) 109, 263–274


2019 ◽  
Author(s):  
Muhammad Shahid ◽  
Eduardo R. Cobo ◽  
Liben Chen ◽  
Paloma A. Cavalcante ◽  
Herman W. Barkema ◽  
...  

AbstractPrototheca zopfiiis an alga increasingly isolated from bovine mastitis. Of the two genotypes ofP. zopfii(genotype I and II (GT-I and II)),P. zopfiiGT-II is the genotype associated with acute mastitis and decreased milk production by unknown mechanisms. The objective was to determine inflammatory and apoptotic roles ofP. zopfiiGT-II in cultured mammary epithelial cells (from cattle and mice) and murine macrophages and using a murine model of mastitis.Prototheca zopfiiGT-II (but not GT-I) invaded bovine and murine mammary epithelial cells (MECs) and induced apoptosis, as determined by the terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labeling assay. ThisP. zopfiiGT-II driven apoptosis corresponded to mitochondrial pathways; mitochondrial transmembrane resistance (ΔΨm) was altered and modulation of mitochondrion-mediated apoptosis regulating genes changed (increased transcriptionalBax, cytochrome-c andApaf-1and downregulatedBcl-2), whereas caspase-9 and -3 expression increased. Apoptotic effects byP. zopfiiGT-II were more pronounced in macrophages compared to MECs. In a murine mammary infection model,P. zopfiiGT-II replicated in the mammary gland and caused severe inflammation with infiltration of macrophages and neutrophils and upregulation of pro-inflammatory genes (TNF-α,IL-1βandCxcl-1) and also apoptosis of epithelial cells. Thus, we concludedP. zopfiiGT-II is a mastitis-causing pathogen that triggers severe inflammation and also mitochondrial apoptosis.Author summaryBovine mastitis (inflammation of the udder) reduces milk production and quality, causing huge economic losses in the dairy industry worldwide. Although the algaPrototheca zopfiiis a major cause of mastitis in dairy cows, mechanisms by which it damages mammary tissues are not well known. Here, we used cell cultures and a mouse model of mastitis to determine howProtothecacaused inflammation and cell death in mammary tissues.Protothecainvaded mammary gland cells, from cattle and mice, as well as macrophages (white cells that take up and kill pathogens) and caused cell death by interfering with mitochondria. Furthermore,Protothecacauses severe inflammation and tissue damage when injected into the mammary glands of mice. Although there are two genotypes ofP. zopfii, only genotype II causes tissue damage, whereas gentotype I, common in farm environments, does not damage mammary tissues. SinceP. zopfiiis an alga and not a bacterium, antibiotic treatments, frequently used to treat mastitis in cattle, are not effective against this organism. Understanding howP. zopfiidamages mammary tissue and causes mastitis is important new knowledge to promote future development of evidence-based approaches to prevent and treat mammary gland infections with this organism.


Sign in / Sign up

Export Citation Format

Share Document