scholarly journals Treponema denticola Activates Mitogen-Activated Protein Kinase Signal Pathways through Toll-Like Receptor 2

2007 ◽  
Vol 75 (12) ◽  
pp. 5763-5768 ◽  
Author(s):  
John Ruby ◽  
Kunal Rehani ◽  
Michael Martin

ABSTRACT Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production.

Blood ◽  
2001 ◽  
Vol 98 (7) ◽  
pp. 2175-2182 ◽  
Author(s):  
Amaya Puig-Kröger ◽  
Miguel Relloso ◽  
Oskar Fernández-Capetillo ◽  
Ana Zubiaga ◽  
Augusto Silva ◽  
...  

Dendritic cells (DC) are highly specialized antigen-presenting cells that on activation by inflammatory stimuli (eg, tumor necrosis factor α [TNF-α] and interleukin-1β [IL-1β]) or infectious agents (eg, lipopolysaccharide [LPS]), mature and migrate into lymphoid organs. During maturation, DC acquire the capacity to prime and polarize resting naive T lymphocytes. Maturation of monocyte-derived DC (MDDC) is inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. This study found that in the presence of the mitogen-activated protein kinase kinase 1–extracellular signal-regulated kinase (ERK) inhibitors PD98059 or U0126, TNF-α– and LPS-induced phenotypic and functional maturation is enhanced. ERK pathway inhibitors increased expression of major histocompatibility complex and costimulatory molecules; loss of mannose-receptor–mediated endocytic activity; nuclear factor-κB DNA-binding activity; release of IL-12 p40; and allogeneic T-cell proliferation induced by LPS or TNF-α. Moreover, PD98059 and U0126 enhanced LPS-triggered production of IL-12 p70. In agreement with the effect of ERK inhibitors, maturation of MDDC was delayed in the presence of serum, an effect that was reversed by U0126. These results indicate that the ERK and p38 MAPK signaling pathways differentially regulate maturation of MDDC and suggest that their relative levels of activation might modulate the initial commitment of naive T-helper (Th) cells toward Th1 or Th2 subsets. The findings also suggest that maturation of MDDC might be pharmacologically modified by altering the relative levels of activation of both intracellular signaling routes.


2021 ◽  
Vol 14 ◽  
Author(s):  
Shuji Wakatsuki ◽  
Toshiyuki Araki

Small non-coding vault RNAs (vtRNAs) have been described as a component of the vault complex, a hollow-and-barrel-shaped ribonucleoprotein complex found in most eukaryotes. It has been suggested that the function of vtRNAs might not be limited to simply maintaining the structure of the vault complex. Despite the increasing research on vtRNAs, little is known about their physiological functions. Recently, we have shown that murine vtRNA (mvtRNA) up-regulates synaptogenesis by activating the mitogen activated protein kinase (MAPK) signaling pathway. mvtRNA binds to and activates mitogen activated protein kinase 1 (MEK1), and thereby enhances MEK1-mediated extracellular signal-regulated kinase activation. Here, we introduce the regulatory mechanism of MAPK signaling in synaptogenesis by vtRNAs and discuss the possibility as a novel molecular basis for synapse formation.


2002 ◽  
Vol 13 (9) ◽  
pp. 3042-3054 ◽  
Author(s):  
Eunan Hendron ◽  
James D. Stockand

Aldosterone in some tissues increases expression of the mRNA encoding the small monomeric G protein Ki-RasA. Renal A6 epithelial cells were used to determine whether induction of Ki-ras leads to concomitant increases in the total as well as active levels of Ki-RasA and whether this then leads to subsequent activation of its effector mitogen-activated protein kinase (MAPK/extracellular signal-regulated kinase) cascade. The molecular basis and cellular consequences of this action were specifically investigated. We identified the intron 1-exon 1 region (rasI/E1) of the mouse Ki-ras gene as sufficient to reconstitute aldosterone responsiveness to a heterologous promotor. Aldosterone increased reporter gene activity containing rasI/E1 threefold. Aldosterone increased the absolute and GTP-bound levels of Ki-RasA by a similar extent, suggesting that activation resulted from mass action and not effects on GTP binding/hydrolysis rates. Aldosterone significantly increased Ki-RasA and MAPK activity as early as 15 min with activation peaking by 2 h and waning after 4 h. Inhibitors of transcription, translation, and a glucocorticoid receptor antagonist attenuated MAPK signaling. Similarly, rasI/E1-driven luciferase expression was sensitive to glucocorticoid receptor blockade. Overexpression of dominant-negative RasN17, addition of antisense Ki-rasA and inhibition of mitogen-activated protein kinase kinase also attenuated steroid-dependent increases in MAPK signaling. Thus, activation of MAPK by aldosterone is dependent, in part, on a genomic mechanism involving induction of Ki-ras transcription and subsequent activation of its downstream effectors. This genomic mechanism has a distinct time course from activation by traditional mitogens, such as serum, which affect the GTP-binding state and not absolute levels of Ras. The result of such a genomic mechanism is that peak activation of the MAPK cascade by adrenal corticosteroids is delayed but prolonged.


2009 ◽  
Vol 88 (5) ◽  
pp. 461-465 ◽  
Author(s):  
H. Karube ◽  
G. Nishitai ◽  
K. Inageda ◽  
H. Kurosu ◽  
M. Matsuoka

The cytotoxic effects of fluoride on odontoblasts are not clear. In this study, we examined whether NaF induces apoptosis in MDPC-23 odontoblast-like cells and the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in NaF-induced apoptosis. MDPC-23 cells incubated with 5 mM NaF for 24 hrs exhibited caspase-3 activation, cleavage of poly(ADP-ribose) polymerase, DNA fragmentation, and an increase in cytoplasmic nucleosomes. Prior to the induction of apoptosis, all MAPKs examined were phosphorylated, but in a different manner. In contrast to the sustained phosphorylation of c-Jun NH2-terminal kinase (JNK) and p38, NaF exposure induced a biphasic phosphorylation of extracellular signal-regulated protein kinase (ERK). NaF-induced apoptosis was markedly suppressed by treatment with the JNK inhibitor, SP600125, and mildly suppressed by the MAPK/ERK kinase inhibitor, U0126. Inhibition of p38 activity did not protect cells from apoptosis. Thus, exposure to NaF induces apoptosis in odontoblast-like cells, depending on JNK and, less significantly, ERK pathways.


Sign in / Sign up

Export Citation Format

Share Document