scholarly journals An Autotransporter Protein fromOrientia tsutsugamushiMediates Adherence to Nonphagocytic Host Cells

2011 ◽  
Vol 79 (4) ◽  
pp. 1718-1727 ◽  
Author(s):  
Na-Young Ha ◽  
Nam-Hyuk Cho ◽  
Yeon-Sook Kim ◽  
Myung-Sik Choi ◽  
Ik-Sang Kim

ABSTRACTOrientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen whose mechanism of cellular adhesion and invasion is poorly characterized. Bioinformatic analyses of twoO. tsutsugamushigenomes revealed the presence of a group of genes that encode autotransporter proteins. In this study, we identified 10 autotransporter gene products and categorized them into five groups of orthologs (ScaA to ScaE) based on their sequence similarities. Sequence homology was highest between members of ScaC group, suggesting the functional conservation of bacterium-host interactions. ScaC was actively expressed on the surface ofO. tsutsugamushiand induced antibody responses in scrub typhus patients. Experiments using microbeads conjugated to recombinant ScaC or a surrogateEscherichia coliexpression system showed that ScaC was sufficient to mediate attachment to, but not invasion of, nonphagocytic mammalian cells. In addition, preincubation of host cells with recombinant ScaC significantly inhibited their interaction withO. tsutsugamushi. Finally, fibronectin was identified as a potential receptor for ScaC by using yeast two-hybrid screening, and this was confirmed using a glutathioneS-transferase (GST) pulldown assay. Taken together, these results demonstrate that ScaC is involved in the interaction ofO. tsutsugamushiwith mammalian host cells and suggest that ScaC may play a critical role in bacterial pathogenesis.

2009 ◽  
Vol 77 (12) ◽  
pp. 5272-5280 ◽  
Author(s):  
Marissa M. Cardwell ◽  
Juan J. Martinez

ABSTRACT Obligate intracellular bacteria of the genus Rickettsia must adhere to and invade the host endothelium in order to establish an infection. These processes require the interaction of rickettsial surface proteins with mammalian host cell receptors. A previous bioinformatic analysis of sequenced rickettsial species identified a family of at least 17 predicted “surface cell antigen” (sca) genes whose products resemble autotransporter proteins. Two members of this family, rOmpA and rOmpB of spotted fever group (SFG) rickettsiae have been identified as adhesion and invasion factors, respectively; however, little is known about the putative functions of the other sca gene products. An intact sca2 gene is found in the majority of pathogenic SFG rickettsiae and, due to its sequence conservation among these species, we predict that Sca2 may play an important function at the rickettsial surface. Here we have shown that sca2 is transcribed and expressed in Rickettsia conorii and have used a heterologous gain-of-function assay in E. coli to determine the putative role of Sca2. Using this system, we have demonstrated that expression of Sca2 at the outer membrane of nonadherent, noninvasive E. coli is sufficient to mediate adherence to and invasion of a panel of mammalian cells, including endothelial cells. Furthermore, soluble Sca2 protein is capable of diminishing R. conorii invasion of cultured mammalian cells. This is the first evidence that Sca2 participates in the interaction between SFG rickettsiae and host cells and suggests that in addition to other surface proteins, Sca2 may play a critical role in rickettsial pathogenesis.


2005 ◽  
Vol 77 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Renato A. Mortara ◽  
Walter K. Andreoli ◽  
Noemi N. Taniwaki ◽  
Adriana B. Fernandes ◽  
Claudio V. da Silva ◽  
...  

Trypanosoma cruzi, the etiological agent of Chagas’ disease, occurs as different strains or isolates that may be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of host cell receptors with which they interact have been identified. Our work focused on how amastigotes, usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T. cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as well as target cells that have modified expression of different classes of cellular components. Cultured host cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit between the parasitophorous vacuole to its final destination in the host cell cytoplasm.


2010 ◽  
Vol 84 (9) ◽  
pp. 4395-4406 ◽  
Author(s):  
Kendra A. Bussey ◽  
Tatiana L. Bousse ◽  
Emily A. Desmet ◽  
Baek Kim ◽  
Toru Takimoto

ABSTRACT The direct infection of humans with highly pathogenic avian H5N1 influenza viruses has suggested viral mutation as one mechanism for the emergence of novel human influenza A viruses. Although the polymerase complex is known to be a key component in host adaptation, mutations that enhance the polymerase activity of avian viruses in mammalian hosts are not fully characterized. The genomic comparison of influenza A virus isolates has identified highly conserved residues in influenza proteins that are specific to either human or avian viruses, including 10 residues in PB2. We characterized the activity of avian polymerase complexes containing avian-to-human mutations at these conserved PB2 residues and found that, in addition to the E627K mutation, the PB2 mutation T271A enhances polymerase activity in human cells. We confirmed the effects of the T271A mutation using recombinant WSN viruses containing avian NP and polymerase genes with wild-type (WT) or mutant PB2. The 271A virus showed enhanced growth compared to that of the WT in mammalian cells in vitro. The 271A mutant did not increase viral pathogenicity significantly in mice compared to that of the 627K mutant, but it did enhance the lung virus titer. Also, cell infiltration was more evident in lungs of 271A-infected mice than in those of the WT. Interestingly, the avian-derived PB2 of the 2009 pandemic H1N1 influenza virus has 271A. The characterization of the polymerase activity of A/California/04/2009 (H1N1) and corresponding PB2 mutants indicates that the high polymerase activity of the pandemic strain in mammalian cells is, in part, dependent on 271A. Our results clearly indicate the contribution of PB2 amino acid 271 to enhanced polymerase activity and viral growth in mammalian hosts.


2001 ◽  
Vol 114 (21) ◽  
pp. 3933-3942 ◽  
Author(s):  
Ana C. S. Monteiro ◽  
Magnus Abrahamson ◽  
Ana P. C. A. Lima ◽  
Marcos A. Vannier-Santos ◽  
Julio Scharfstein

Lysosomal cysteine proteases from mammalian cells and plants are regulated by endogenous tight-binding inhibitors from the cystatin superfamily. The presence of cystatin-like inhibitors in lower eukaryotes such as protozoan parasites has not yet been demonstrated, although these cells express large quantities of cysteine proteases and may also count on endogenous inhibitors to regulate cellular proteolysis. Trypanosoma cruzi, the causative agent of Chagas’ heart disease, is a relevant model to explore this possibility because these intracellular parasites rely on their major lysosomal cysteine protease (cruzipain) to invade and multiply in mammalian host cells. Here we report the isolation, biochemical characterization, developmental stage distribution and subcellular localization of chagasin, an endogenous cysteine protease inhibitor in T. cruzi. We used high temperature induced denaturation to isolate a heat-stable cruzipain-binding protein (apparent molecular mass, 12 kDa) from epimastigote lysates. This protein was subsequently characterized as a tight-binding and reversible inhibitor of papain-like cysteine proteases. Immunoblotting indicated that the expression of chagasin is developmentally regulated and inversely correlated with that of cruzipain. Gold-labeled antibodies localized chagasin to the flagellar pocket and cytoplasmic vesicles of trypomastigotes and to the cell surface of amastigotes. Binding assays performed by probing living parasites with fluorescein (FITC)-cruzipain or FITC-chagasin revealed the presence of both inhibitor and protease at the cell surface of amastigotes. The intersection of chagasin and cruzipain trafficking pathways may represent a checkpoint for downstream regulation of proteolysis in trypanosomatid protozoa.


1996 ◽  
Vol 40 (11) ◽  
pp. 2455-2458 ◽  
Author(s):  
J Nakajima-Shimada ◽  
Y Hirota ◽  
T Aoki

Trypanosoma cruzi, the causative agent of Chagas' disease, exhibits two different developmental stages in mammals, the amastigote, an intracellular form that proliferates in the cytoplasm of host cells, and the trypomastigote, an extracellular form that circulates in the bloodstream. We have already established an in vitro culture system using mammalian host cells (HeLa) infected with T. cruzi in which the time course of parasite growth is determined quantitatively. We adopted this system for the screening of anti-T. cruzi agents that would ideally prove to be effective against trypanosomes with no toxicity to the host cell. Of the purine analogs tested, allopurinol markedly inhibited the growth of amastigotes in a dose-dependent manner, with no lethal effect on trypomastigotes. 3'-Deoxyinosine and 3'-deoxyadenosine also suppressed T. cruzi growth inside the host cell, with the concentrations causing 50% growth inhibition being 10 and 5 microM, respectively, in contrast to a concentration causing 50% growth inhibition of 3 microM for allopurinol. Among the pyrimidine analogs examined, 3'-azido-3'-deoxythymidine (zidovudine) significantly reduced the growth of the parasite at concentrations as low as 1 microM. The anti-human immunodeficiency virus agents 2',3'-dideoxyinosine and 2',3'-dideoxyadenosine caused a decrease in amastigote growth, while 2',3'-dideoxycytidine and 2',3'-dideoxyuridine had no inhibitory effect. When Swiss 3T3 fibroblasts were used as host cells, allopurinol, 3'-deoxyinosine, 3'-deoxyadenosine, and 3'-azid-3'-deoxythymidine also markedly inhibited T. cruzi proliferation. These results indicate that our culture system is useful as a primary screening method for candidate compounds against T. cruzi on the basis of two criteria, namely, intracellular replication by the parasite and host-cell infection rate.


2008 ◽  
Vol 190 (18) ◽  
pp. 6234-6242 ◽  
Author(s):  
Nicole C. Ammerman ◽  
M. Sayeedur Rahman ◽  
Abdu F. Azad

ABSTRACT As obligate intracellular, vector-borne bacteria, rickettsiae must adapt to both mammalian and arthropod host cell environments. Deciphering the molecular mechanisms of the interactions between rickettsiae and their host cells has largely been hindered by the genetic intractability of these organisms; however, research in other gram-negative pathogens has demonstrated that many bacterial determinants of attachment, entry, and pathogenesis are extracytoplasmic proteins. The annotations of several rickettsial genomes indicate the presence of homologs of the Sec translocon, the major route for bacterial protein secretion from the cytoplasm. For Rickettsia typhi, the etiologic agent of murine typhus, homologs of the Sec-translocon-associated proteins LepB, SecA, and LspA have been functionally characterized; therefore, the R. typhi Sec apparatus represents a mechanism for the secretion of rickettsial proteins, including virulence factors, into the extracytoplasmic environment. Our objective was to characterize such Sec-dependent R. typhi proteins in the context of a mammalian host cell infection. By using the web-based programs LipoP, SignalP, and Phobius, a total of 191 R. typhi proteins were predicted to contain signal peptides targeting them to the Sec translocon. Of these putative signal peptides, 102 were tested in an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system. Eighty-four of these candidates exhibited signal peptide activity in E. coli, and transcriptional analysis indicated that at least 54 of the R. typhi extracytoplasmic proteins undergo active gene expression during infections of HeLa cells. This work highlights a number of interesting proteins possibly involved in rickettsial growth and virulence in mammalian cells.


2005 ◽  
Vol 388 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Izabela M. D. BASTOS ◽  
Philippe GRELLIER ◽  
Natalia F. MARTINS ◽  
Gloria CADAVID-RESTREPO ◽  
Marian R. de SOUZA-AULT ◽  
...  

We have demonstrated that the 80 kDa POP Tc80 (prolyl oligopeptidase of Trypanosoma cruzi) is involved in the process of cell invasion, since specific inhibitors block parasite entry into non-phagocytic mammalian host cells. In contrast with other POPs, POP Tc80 is capable of hydrolysing large substrates, such as fibronectin and native collagen. In this study, we present the cloning of the POPTc80 gene, whose deduced amino acid sequence shares considerable identity with other members of the POP family, mainly within its C-terminal portion that forms the catalytic domain. Southern-blot analysis indicated that POPTc80 is present as a single copy in the genome of the parasite. These results are consistent with mapping of POPTc80 to a single chromosome. The active recombinant protein (rPOP Tc80) displayed kinetic properties comparable with those of the native enzyme. Novel inhibitors were assayed with rPOP Tc80, and the most efficient ones presented values of inhibition coefficient Ki≤1.52 nM. Infective parasites treated with these specific POP Tc80 inhibitors attached to the surface of mammalian host cells, but were incapable of infecting them. Structural modelling of POP Tc80, based on the crystallized porcine POP, suggested that POP Tc80 is composed of an α/β-hydrolase domain containing the catalytic triad Ser548–Asp631–His667 and a seven-bladed β-propeller non-catalytic domain. Docking analysis suggests that triple-helical collagen access to the catalytic site of POP Tc80 occurs in the vicinity of the interface between the two domains.


2020 ◽  
Vol 27 ◽  
Author(s):  
Hyejin Cho ◽  
Kwang-Sun Kim

Background: Orientia tsutsugamushi (Ot) is an obligate, intracellular, gram-negative bacterium causing scrub typhus. Some of its encoded proteins play key roles in the adhesion and internalization of the Ot strain into host cells and are suitable resources for vaccine development and tools for scrub typhus diagnosis. Surface cell antigen (Sca) proteins, classified as autotransporter (AT) proteins, are one of the largest protein families involved in bacterial pathogenesis and can be promising candidates for vaccine development. These proteins are typically large and contain inhibitory domains; therefore, recombinant proteins without such domains have been evaluated for this purpose. However, the expression for recombinant Sca proteins containing the AT domain, which might largely affect their protective role against scrub typhus, has not been analyzed and optimized. Objective: In this study, we optimized individual genes encoding Sca protein fragments [ScaA (27–1461), ScaC (257–526), ScaD (26–998), and ScaE (35–760)] harboring the AT domain. Methods: To this end we subcloned sequences of codon-optimized DNA encoding Sca protein fragments into the Escherichia coli expression vector. In addition, the expression condition for individual Sca fragments was optimized, and the proteins were purified using one-step histidine-tag column method. The purified proteins were re-folded by serial dilution method, followed by BCA quantification and densitometric analysis to estimate the protein yield and purity. Results: We prepared platforms for expression of recombinant Sca protein fragments [ScaA (27–1461), ScaC (257–526), ScaD (26–998), and ScaE (35–760)] containing an AT domain but no signal peptide and transmembrane (TM) domain. The protein yield per liter of culture with >70% of purity was ScaC (257–576), ScaE (35–760), ScaD (26-998), and ScaA (27- 1461) in order. Conclusion: Our results could be used to develop Sca AT-domain based vaccines and tools for scrub typhus diagnosis with rapid and cost-effective ways.


2010 ◽  
Vol 78 (5) ◽  
pp. 1895-1904 ◽  
Author(s):  
Sean P. Riley ◽  
Kenneth C. Goh ◽  
Timothy M. Hermanas ◽  
Marissa M. Cardwell ◽  
Yvonne G. Y. Chan ◽  
...  

ABSTRACT The pathogenesis of spotted fever group (SFG) Rickettsia species, including R. conorii and R. rickettsii, is acutely dependent on adherence to and invasion of host cells, including cells of the mammalian endothelial system. Bioinformatic analyses of several rickettsia genomes revealed the presence of a cohort of genes designated sca genes that are predicted to encode proteins with homology to autotransporter proteins of Gram-negative bacteria. Previous work demonstrated that three members of this family, rOmpA (Sca0), Sca2, and rOmpB (Sca5) are involved in the interaction with mammalian cells; however, very little was known about the function of other conserved rickettsial Sca proteins. Here we demonstrate that sca1, a gene present in nearly all SFG rickettsia genomes, is actively transcribed and expressed in R. conorii cells. Alignment of Sca1 sequences from geographically diverse SFG Rickettsia species showed that there are high degrees of sequence identity and conservation of these sequences, suggesting that Sca1 may have a conserved function. Using a heterologous expression system, we demonstrated that production of R. conorii Sca1 in the Escherichia coli outer membrane is sufficient to mediate attachment to but not invasion of a panel of cultured mammalian epithelial and endothelial cells. Furthermore, preincubation of a recombinant Sca1 peptide with host cells blocked R. conorii cell association. Together, these results demonstrate that attachment to mammalian cells can be uncoupled from the entry process and that Sca1 is involved in the adherence of R. conorii to host cells.


1988 ◽  
Vol 168 (2) ◽  
pp. 649-659 ◽  
Author(s):  
V Ley ◽  
N W Andrews ◽  
E S Robbins ◽  
V Nussenzweig

The two main stages of development of the protozoan parasite Trypanosoma cruzi found in the vertebrate host are the trypomastigote and the amastigote. It has been generally assumed that only trypomastigotes are capable of entering cells and that amastigotes are the intracellular replicative form of the parasite. We show here that after incubation for 4 h with human monocytes in vitro 90% or more of extracellularly derived (24 h) amastigotes of T. cruzi are taken up by the cells. Within 2 h they escape the phagocytic vacuole and enter the cytoplasm, where they divide and after 4-5 d transform into trypomastigotes. Trypomastigotes also invade cultured human monocytes. However, they show a lag of several hours between invasion and the start of DNA duplication, while amastigotes commence replication without an apparent lag. Amastigotes also infect cultured fibroblasts, albeit with lower efficiency. When injected intraperitoneally into mice, amastigotes are as infective as trypomastigotes. Based on these results, and on prior findings that amastigotes are found free in the circulation of mice during the acute stage of the disease (3), it seems likely that the cellular uptake of amastigotes can initiate an alternative subcycle within the life cycle of this parasite in the mammalian host. Also, because trypomastigotes and amastigotes have diverse surface antigens, they may use different strategies to invade host cells.


Sign in / Sign up

Export Citation Format

Share Document