scholarly journals Involvement of Host Cell Integrin α2 in Cryptosporidium parvum Infection

2012 ◽  
Vol 80 (5) ◽  
pp. 1753-1758 ◽  
Author(s):  
Haili Zhang ◽  
Fengguang Guo ◽  
Guan Zhu

ABSTRACTCryptosporidium parvumis an opportunistic pathogen in AIDS patients. It is an intracellular but extracytoplasmic parasite residing in a host cell-derived parasitophorous vacuole. It is still poorly understood how this parasite interacts with host cells. We observed that expression of the integrin α2 (ITGA2) gene in host cells was significantly upregulated uponC. parvuminfection, and a higher level of ITGA2 protein was present in the parasite infection sites. The infection could be reduced by the treatment of antibodies against ITGA2 and integrin β1 (ITGB1) subunits, as well as by type I collagen (an integrin α2β1 ligand). We also generated stable knockdown of ITGA2 gene expression in HCT-8 cells and observed consistent reduction of parasite infection in these knockdown cells. Collectively, our evidence indicates that host cell ITGA2 might be involved in interacting withCryptosporidiumduring infection, probably acting as part of the regulatory elements upstream of the reported recruiting and reorganization of F actin at the infection sites.

2021 ◽  
Vol 9 (5) ◽  
pp. 1015
Author(s):  
Tianyu Zhang ◽  
Xin Gao ◽  
Dongqiang Wang ◽  
Jixue Zhao ◽  
Nan Zhang ◽  
...  

Cryptosporidium parvum is a globally recognized zoonotic parasite of medical and veterinary importance. This parasite mainly infects intestinal epithelial cells and causes mild to severe watery diarrhea that could be deadly in patients with weakened or defect immunity. However, its molecular interactions with hosts and pathogenesis, an important part in adaptation of parasitic lifestyle, remain poorly understood. Here we report the identification and characterization of a C. parvum T-cell immunomodulatory protein homolog (CpTIPH). CpTIPH is a 901-aa single-pass type I membrane protein encoded by cgd5_830 gene that also contains a short Vibrio, Colwellia, Bradyrhizobium and Shewanella (VCBS) repeat and relatively long integrin alpha (ITGA) N-terminus domain. Immunofluorescence assay confirmed the location of CpTIPH on the cell surface of C. parvum sporozoites. In congruence with the presence of VCBS repeat and ITGA domain, CpTIPH displayed high, nanomolar binding affinity to host cell surface (i.e., Kd(App) at 16.2 to 44.7 nM on fixed HCT-8 and CHO-K1 cells, respectively). The involvement of CpTIPH in the parasite invasion is partly supported by experiments showing that an anti-CpTIPH antibody could partially block the invasion of C. parvum sporozoites into host cells. These observations provide a strong basis for further investigation of the roles of CpTIPH in parasite-host cell interactions.


2019 ◽  
Vol 221 (11) ◽  
pp. 1816-1825
Author(s):  
Xue Yu ◽  
Fengguang Guo ◽  
Rola Barhoumi Mouneimne ◽  
Guan Zhu

Abstract Background Cryptosporidium is a genus of apicomplexan parasites, the causative agents of cryptosporidiosis in humans and/or animals. Although most apicomplexans parasitize within the host cell cytosols, Cryptosporidium resides on top of host cells, but it is embraced by a double-layer parasitophorous vacuole membrane derived from host cell. There is an electron-dense band to separate the parasite from host cell cytoplasm, making it as an intracellular but extracytoplasmic parasite. However, little is known on the molecular machinery at the host cell-parasite interface. Methods Cryptosporidium parvum at various developmental stages were obtained by infecting HCT-8 cells cultured in vitro. Immunofluorescence assay was used to detect CpEF1α with a polyclonal antibody and host cell F-actin with rhodamine-phalloidin. Recombinant CpEF1α protein was used to evaluate its effect on the invasion by the parasite. Results We discovered that a C parvum translation elongation factor 1α (CpEF1α) was discharged from the invading sporozoites into host cells, forming a crescent-shaped patch that fully resembles the electron-dense band. At the same time, host cell F-actin aggregated to form a globular-shaped plug beneath the CpEF1α patch. The CpEF1α patch remained for most of the time but became weakened and dissolved upon the completion of the invasion process. In addition, recombinant CpEF1α protein could effectively interfere the invasion of sporozoites into host cells. Conclusions CpEF1α plays a role in the parasite invasion by participating in the formation of electron-dense band at the base of the parasite infection site.


2011 ◽  
Vol 10 (8) ◽  
pp. 1095-1099 ◽  
Author(s):  
Carolina E. Caffaro ◽  
John C. Boothroyd

ABSTRACT The intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling. By selectively labeling host cell or parasite membranes, we uncovered evidence that strongly supports the host cell as the primary, if not exclusive, source of lipids for parasite IVN remodeling. Fluorescence recovery after photobleaching (FRAP) microscopy experiments revealed that lipids are surprisingly dynamic within the parasitophorous vacuole and are continuously exchanged or replenished by the host cell. The results presented here suggest a new model for development of the parasitophorous vacuole whereby the host provides a continuous stream of lipids to support the growth and maturation of the PVM and IVN.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Bing Han ◽  
Yanfen Ma ◽  
Vincent Tu ◽  
Tadakimi Tomita ◽  
Joshua Mayoral ◽  
...  

ABSTRACT Microsporidia are opportunistic intracellular pathogens that can infect a wide variety of hosts ranging from invertebrates to vertebrates. During invasion, the microsporidian polar tube pushes into the host cell, creating a protective microenvironment, the invasion synapse, into which the sporoplasm extrudes. Within the synapse, the sporoplasm then invades the host cell, forming a parasitophorous vacuole (PV). Using a proteomic approach, we identified Encephalitozoon hellem sporoplasm surface protein 1 (EhSSP1), which localized to the surface of extruded sporoplasms. EhSSP1 was also found to interact with polar tube protein 4 (PTP4). Recombinant EhSSP1 (rEhSSP1) bound to human foreskin fibroblasts, and both anti-EhSSP1 and rEhSSP1 caused decreased levels of host cell invasion, suggesting that interaction of SSP1 with the host cell was involved in invasion. Coimmunoprecipitation (Co-IP) followed by proteomic analysis identified host cell voltage-dependent anion channels (VDACs) as EhSSP1 interacting proteins. Yeast two-hybrid assays demonstrated that EhSSP1 was able to interact with VDAC1, VDAC2, and VDAC3. rEhSSP1 colocalized with the host mitochondria which were associated with microsporidian PVs in infected cells. Transmission electron microscopy revealed that the outer mitochondrial membrane interacted with meronts and the PV membrane, mitochondria clustered around meronts, and the VDACs were concentrated at the interface of mitochondria and parasite. Knockdown of VDAC1, VDAC2, and VDAC3 in host cells resulted in significant decreases in the number and size of the PVs and a decrease in mitochondrial PV association. The interaction of EhSSP1 with VDAC probably plays an important part in energy acquisition by microsporidia via its role in the association of mitochondria with the PV. IMPORTANCE Microsporidia are important opportunistic human pathogens in immune-suppressed individuals, such as those with HIV/AIDS and recipients of organ transplants. The sporoplasm is critical for establishing microsporidian infection. Despite the biological importance of this structure for transmission, there is limited information about its structure and composition that could be targeted for therapeutic intervention. Here, we identified a novel E. hellem sporoplasm surface protein, EhSSP1, and demonstrated that it can bind to host cell mitochondria via host VDAC. Our data strongly suggest that the interaction between SSP1 and VDAC is important for the association of mitochondria with the parasitophorous vacuole during microsporidian infection. In addition, binding of SSP1 to the host cell is associated with the final steps of invasion in the invasion synapse.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
pp. e01001-20
Author(s):  
Paul-Christian Burda ◽  
Hugo Bisio ◽  
Jean-Baptiste Marq ◽  
Dominique Soldati-Favre ◽  
Volker T. Heussler

ABSTRACTToxoplasma gondii and members of the genus Plasmodium are obligate intracellular parasites that leave their infected host cell upon a tightly controlled process of egress. Intracellular replication of the parasites occurs within a parasitophorous vacuole, and its membrane as well as the host plasma membrane need to be disrupted during egress, leading to host cell lysis. While several parasite-derived factors governing egress have been identified, much less is known about host cell factors involved in this process. Previously, RNA interference (RNAi)-based knockdown and antibody-mediated depletion identified a host signaling cascade dependent on guanine nucleotide-binding protein subunit alpha q (GNAQ) to be required for the egress of Toxoplasma tachyzoites and Plasmodium blood stage merozoites. Here, we used CRISPR/Cas9 technology to generate HeLa cells deficient in GNAQ and tested their capacity to support the egress of T. gondii tachyzoites and Plasmodium berghei liver stage parasites. While we were able to confirm the importance of GNAQ for the egress of T. gondii, we found that the egress of P. berghei liver stages was unaffected in the absence of GNAQ. These results may reflect differences between the lytic egress process in apicomplexans and the formation of host cell-derived vesicles termed merosomes by P. berghei liver stages.IMPORTANCE The coordinated release of apicomplexan parasites from infected host cells prior to reinvasion is a critical process for parasite survival and the spread of infection. While Toxoplasma tachyzoites and Plasmodium blood stages induce a fast disruption of their surrounding membranes during their egress from host cells, Plasmodium liver stages keep the host cell membrane intact and leave their host cell in host cell-derived vesicles called merosomes. The knockout of GNAQ, a protein involved in G-protein-coupled receptor signaling, demonstrates the importance of this host factor for the lytic egress of T. gondii tachyzoites. Contrastingly, the egress of P. berghei is independent of GNAQ at the liver stage, indicating the existence of a mechanistically distinct strategy to exit the host cell.


2013 ◽  
Vol 82 (2) ◽  
pp. 706-719 ◽  
Author(s):  
Emily E. Rosowski ◽  
Quynh P. Nguyen ◽  
Ana Camejo ◽  
Eric Spooner ◽  
Jeroen P. J. Saeij

ABSTRACTThe gamma interferon (IFN-γ) response, mediated by the STAT1 transcription factor, is crucial for host defense against the intracellular pathogenToxoplasma gondii, but prior infection withToxoplasmacan inhibit this response. Recently, it was reported that theToxoplasmatype II NTE strain prevents the recruitment of chromatin remodeling complexes containing Brahma-related gene 1 (BRG-1) to promoters of IFN-γ-induced secondary response genes such asCiitaand major histocompatibility complex class II genes in murine macrophages, thereby inhibiting their expression. We report here that a type I strain ofToxoplasmainhibits the expression of primary IFN-γ response genes such asIRF1through a distinct mechanism not dependent on the activity of histone deacetylases. Instead, infection with a type I, II, or III strain ofToxoplasmainhibits the dissociation of STAT1 from DNA, preventing its recycling and further rounds of STAT1-mediated transcriptional activation. This leads to increased IFN-γ-induced binding of STAT1 at theIRF1promoter in host cells and increased global IFN-γ-induced association of STAT1 with chromatin.Toxoplasmatype I infection also inhibits IFN-β-induced interferon-stimulated gene factor 3-mediated gene expression, and this inhibition is also linked to increased association of STAT1 with chromatin. The secretion of proteins into the host cell by a type I strain ofToxoplasmawithout complete parasite invasion is not sufficient to block STAT1-mediated expression, suggesting that the effector protein responsible for this inhibition is not derived from the rhoptries.


2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Erik J. Kopping ◽  
Christopher R. Doyle ◽  
Vinaya Sampath ◽  
David G. Thanassi

ABSTRACTFrancisella tularensisis a Gram-negative, facultative intracellular pathogen and the causative agent of tularemia. Previous studies with the attenuated live vaccine strain (LVS) identified a role for the outer membrane protein TolC in modulation of host cell responses during infection and virulence in the mouse model of tularemia. TolC is an integral part of efflux pumps that export small molecules and type I secretion systems that export a range of bacterial virulence factors. In this study, we analyzed TolC and its two orthologs, FtlC and SilC, present in the fully virulentF. tularensisSchu S4 strain for their contributions to multidrug efflux, suppression of innate immune responses, and virulence. We found that each TolC ortholog participated in multidrug efflux, with overlapping substrate specificities for TolC and FtlC and a distinct substrate profile for SilC. In contrast to their shared roles in drug efflux, only TolC functioned in the modulation of macrophage apoptotic and proinflammatory responses to Schu S4 infection, consistent with a role in virulence factor delivery to host cells. In agreement with previous results with the LVS, the Schu S4 ΔtolCmutant was highly attenuated for virulence in mice by both the intranasal and intradermal routes of infection. Unexpectedly, FtlC was also critical for Schu S4 virulence, but only by the intradermal route. Our data demonstrate a conserved and critical role for TolC in modulation of host immune responses andFrancisellavirulence and also highlight strain- and route-dependent differences in the pathogenesis of tularemia.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Nathan M. Chasen ◽  
Beejan Asady ◽  
Leandro Lemgruber ◽  
Rossiane C. Vommaro ◽  
Jessica C. Kissinger ◽  
...  

ABSTRACT Toxoplasma gondii is an intracellular pathogen that infects humans and animals. The pathogenesis of T. gondii is linked to its lytic cycle, which starts when tachyzoites invade host cells and secrete proteins from specialized organelles. Once inside the host cell, the parasite creates a parasitophorous vacuole (PV) where it divides. Rhoptries are specialized secretory organelles that contain proteins, many of which are secreted during invasion. These proteins have important roles not only during the initial interaction between parasite and host but also in the formation of the PV and in the modification of the host cell. We report here the identification of a new T. gondii carbonic anhydrase-related protein (TgCA_RP), which localizes to rhoptries of mature tachyzoites. TgCA_RP is important for the morphology of rhoptries and for invasion and growth of parasites. TgCA_RP is also critical for parasite virulence. We propose that TgCA_RP plays a role in the biogenesis of rhoptries. Carbonic anhydrase-related proteins (CARPs) have previously been described as catalytically inactive proteins closely related to α-carbonic anhydrases (α-CAs). These CARPs are found in animals (both vertebrates and invertebrates) and viruses as either independent proteins or domains of other proteins. We report here the identification of a new CARP (TgCA_RP) in the unicellular organism Toxoplasma gondii that is related to the recently described η-class CA found in Plasmodium falciparum. TgCA_RP is posttranslationally modified at its C terminus with a glycosylphosphatidylinositol anchor that is important for its localization in intracellular tachyzoites. The protein localizes throughout the rhoptry bulbs of mature tachyzoites and to the outer membrane of nascent rhoptries in dividing tachyzoites, as demonstrated by immunofluorescence and immunoelectron microscopy using specific antibodies. T. gondii mutant tachyzoites lacking TgCA_RP display a growth and invasion phenotype in vitro and have atypical rhoptry morphology. The mutants also exhibit reduced virulence in a mouse model. Our results show that TgCA_RP plays an important role in the biogenesis of rhoptries. IMPORTANCE Toxoplasma gondii is an intracellular pathogen that infects humans and animals. The pathogenesis of T. gondii is linked to its lytic cycle, which starts when tachyzoites invade host cells and secrete proteins from specialized organelles. Once inside the host cell, the parasite creates a parasitophorous vacuole (PV) where it divides. Rhoptries are specialized secretory organelles that contain proteins, many of which are secreted during invasion. These proteins have important roles not only during the initial interaction between parasite and host but also in the formation of the PV and in the modification of the host cell. We report here the identification of a new T. gondii carbonic anhydrase-related protein (TgCA_RP), which localizes to rhoptries of mature tachyzoites. TgCA_RP is important for the morphology of rhoptries and for invasion and growth of parasites. TgCA_RP is also critical for parasite virulence. We propose that TgCA_RP plays a role in the biogenesis of rhoptries.


2004 ◽  
Vol 3 (5) ◽  
pp. 1320-1330 ◽  
Author(s):  
Kimberly L. Carey ◽  
Artemio M. Jongco ◽  
Kami Kim ◽  
Gary E. Ward

ABSTRACT Many intracellular pathogens are separated from the cytosol of their host cells by a vacuole membrane. This membrane serves as a critical interface between the pathogen and the host cell, across which nutrients are imported, wastes are excreted, and communication between the two cells takes place. Very little is known about the vacuole membrane proteins mediating these processes in any host-pathogen interaction. During a screen for monoclonal antibodies against novel surface or secreted proteins of Toxoplasma gondii, we identified ROP4, a previously uncharacterized member of the ROP2 family of proteins. We report here on the sequence, posttranslational processing, and subcellular localization of ROP4, a type I transmembrane protein. Mature, processed ROP4 is localized to the rhoptries, secretory organelles at the apical end of the parasite, and is secreted from the parasite during host cell invasion. Released ROP4 associates with the vacuole membrane and becomes phosphorylated in the infected cell. Similar results are seen with ROP2. Further analysis of ROP4 showed it to be phosphorylated on multiple sites, a subset of which result from the action of either host cell protein kinase(s) or parasite kinase(s) activated by host cell factors. The localization and posttranslational modification of ROP4 and other members of the ROP2 family of proteins within the infected cell make them well situated to play important roles in vacuole membrane function.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Suchita Rastogi ◽  
Yuan Xue ◽  
Stephen R. Quake ◽  
John C. Boothroyd

ABSTRACT The intracellular parasite Toxoplasma gondii employs a vast array of effector proteins from the rhoptry and dense granule organelles to modulate host cell biology; these effectors are known as ROPs and GRAs, respectively. To examine the individual impacts of ROPs and GRAs on host gene expression, we developed a robust, novel protocol to enrich for ultrapure populations of a naturally occurring and reproducible population of host cells called uninfected-injected (U-I) cells, which Toxoplasma injects with ROPs but subsequently fails to invade. We then performed single-cell transcriptomic analysis at 1 to 3 h postinfection on U-I cells (as well as on uninfected and infected controls) arising from infection with either wild-type parasites or parasites lacking the MYR1 protein, which is required for soluble GRAs to cross the parasitophorous vacuole membrane (PVM) and reach the host cell cytosol. Based on comparisons of infected and U-I cells, the host’s earliest response to infection appears to be driven primarily by the injected ROPs, which appear to induce immune and cellular stress pathways. These ROP-dependent proinflammatory signatures appear to be counteracted by at least some of the MYR1-dependent GRAs and may be enhanced by the MYR-independent GRAs (which are found embedded within the PVM). Finally, signatures detected in uninfected bystander cells from the infected monolayers suggest that MYR1-dependent paracrine effects also counteract inflammatory ROP-dependent processes. IMPORTANCE This work performs transcriptomic analysis of U-I cells, captures the earliest stage of a host cell’s interaction with Toxoplasma gondii, and dissects the effects of individual classes of parasite effectors on host cell biology.


Sign in / Sign up

Export Citation Format

Share Document