scholarly journals A Single-Pass Type I Membrane Protein from the Apicomplexan Parasite Cryptosporidium parvum with Nanomolar Binding Affinity to Host Cell Surface

2021 ◽  
Vol 9 (5) ◽  
pp. 1015
Author(s):  
Tianyu Zhang ◽  
Xin Gao ◽  
Dongqiang Wang ◽  
Jixue Zhao ◽  
Nan Zhang ◽  
...  

Cryptosporidium parvum is a globally recognized zoonotic parasite of medical and veterinary importance. This parasite mainly infects intestinal epithelial cells and causes mild to severe watery diarrhea that could be deadly in patients with weakened or defect immunity. However, its molecular interactions with hosts and pathogenesis, an important part in adaptation of parasitic lifestyle, remain poorly understood. Here we report the identification and characterization of a C. parvum T-cell immunomodulatory protein homolog (CpTIPH). CpTIPH is a 901-aa single-pass type I membrane protein encoded by cgd5_830 gene that also contains a short Vibrio, Colwellia, Bradyrhizobium and Shewanella (VCBS) repeat and relatively long integrin alpha (ITGA) N-terminus domain. Immunofluorescence assay confirmed the location of CpTIPH on the cell surface of C. parvum sporozoites. In congruence with the presence of VCBS repeat and ITGA domain, CpTIPH displayed high, nanomolar binding affinity to host cell surface (i.e., Kd(App) at 16.2 to 44.7 nM on fixed HCT-8 and CHO-K1 cells, respectively). The involvement of CpTIPH in the parasite invasion is partly supported by experiments showing that an anti-CpTIPH antibody could partially block the invasion of C. parvum sporozoites into host cells. These observations provide a strong basis for further investigation of the roles of CpTIPH in parasite-host cell interactions.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jingwen Yue ◽  
Weihua Jin ◽  
Hua Yang ◽  
John Faulkner ◽  
Xuehong Song ◽  
...  

The severe acute respiratory syndrome (SARS)-like coronavirus disease (COVID-19) is caused by SARS-CoV-2 and has been a serious threat to global public health with limited treatment. Cellular heparan sulfate (HS) has been found to bind SARS-CoV-2 spike protein (SV2-S) and co-operate with cell surface receptor angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 infection of host cells. In this study, we determined that host cell surface SV2-S binding depends on and correlates with host cell surface HS expression. This binding is required for SARS-Cov-2 virus to infect host cells and can be blocked by heparin lyase, HS antagonist surfen, heparin, and heparin derivatives. The binding of heparin/HS to SV2-S is mainly determined by its overall sulfation with potential, minor contribution of specific SV2-S binding motifs. The higher binding affinity of SV2-S G614 mutant to heparin and upregulated HS expression may be one of the mechanisms underlying the higher infectivity of the SARS-CoV-2 G614 variant and the high vulnerability of lung cancer patients to SARS-CoV-2 infection, respectively. The higher host cell infection by SARS-CoV-2 G614 variant pseudovirus and the increased infection caused by upregulated HS expression both can be effectively blocked by heparin lyase and heparin, and possibly surfen and heparin derivatives too. Our findings support blocking HS-SV2-S interaction may provide one addition to achieve effective prevention and/treatment of COVID-19.


2004 ◽  
Vol 78 (18) ◽  
pp. 9666-9674 ◽  
Author(s):  
G. Grant Welstead ◽  
Eric C. Hsu ◽  
Caterina Iorio ◽  
Shelly Bolotin ◽  
Christopher D. Richardson

ABSTRACT Measles virus has been reported to enter host cells via either of two cellular receptors, CD46 and CD150 (SLAM). CD46 is found on most cells of higher primates, while SLAM is expressed on activated B, T, and dendritic cells and is an important regulatory molecule of the immune system. Previous reports have shown that measles virus can down regulate expression of its two cellular receptors on the host cell surface during infection. In this study, the process of down regulation of SLAM by measles virus was investigated. We demonstrated that expression of the hemagglutinin (H) protein of measles virus was sufficient for down regulation. Our studies provided evidence that interactions between H and SLAM in the endoplasmic reticulum (ER) can promote the down regulation of SLAM but not CD46. In addition, we demonstrated that interactions between H and SLAM at the host cell surface can also contribute to SLAM down regulation. These results indicate that two mechanisms involving either intracellular interactions between H and SLAM in the ER or receptor-mediated binding to H at the surfaces of host cells can lead to the down regulation of SLAM during measles virus infection.


2007 ◽  
Vol 6 (8) ◽  
pp. 1354-1362 ◽  
Author(s):  
Timothy R. Southern ◽  
Carrie E. Jolly ◽  
Melissa E. Lester ◽  
J. Russell Hayman

ABSTRACT Microsporidia are spore-forming fungal pathogens that require the intracellular environment of host cells for propagation. We have shown that spores of the genus Encephalitozoon adhere to host cell surface glycosaminoglycans (GAGs) in vitro and that this adherence serves to modulate the infection process. In this study, a spore wall protein (EnP1; Encephalitozoon cuniculi ECU01_0820) from E. cuniculi and Encephalitozoon intestinalis is found to interact with the host cell surface. Analysis of the amino acid sequence reveals multiple heparin-binding motifs, which are known to interact with extracellular matrices. Both recombinant EnP1 protein and purified EnP1 antibody inhibit spore adherence, resulting in decreased host cell infection. Furthermore, when the N-terminal heparin-binding motif is deleted by site-directed mutagenesis, inhibition of adherence is ablated. Our transmission immunoelectron microscopy reveals that EnP1 is embedded in the microsporidial endospore and exospore and is found in high abundance in the polar sac/anchoring disk region, an area from which the everting polar tube is released. Finally, by using a host cell binding assay, EnP1 is shown to bind host cell surfaces but not to those that lack surface GAGs. Collectively, these data show that given its expression in both the endospore and the exospore, EnP1 is a microsporidian cell wall protein that may function both in a structural capacity and in modulating in vitro host cell adherence and infection.


2002 ◽  
Vol 70 (6) ◽  
pp. 3187-3198 ◽  
Author(s):  
Nadine Keller ◽  
Arunasalam Naguleswaran ◽  
Angela Cannas ◽  
Nathalie Vonlaufen ◽  
Marianne Bienz ◽  
...  

ABSTRACT The invasive stages of apicomplexan parasites enter their host cells through mechanisms which are largely conserved throughout the phylum. Host cell invasion is divided into two distinct events, namely, adhesion onto the host cell surface and the actual host cell entry process. The former is mediated largely through microneme proteins which are secreted at the onset of establishing contact with the host cell surface. Many of the microneme proteins identified so far contain adhesive domains. We here present the genomic and corresponding cDNA sequences coding for a 460-amino-acid (aa) microneme protein in Neospora caninum tachyzoites which, due to its homology to MIC1 in Toxoplasma gondii (TgMIC1), was named NcMIC1. The deduced NcMIC1 polypeptide sequence contains an N-terminal signal peptide of 20 aa followed by two tandemly internal repeats of 48 and 44 aa, respectively. Integrated into each repeat is a CXXXCG sequence motif reminiscent of the thrombospondin-related family of adhesive proteins. The positioning of this motif is strictly conserved in TgMIC1 and NcMIC1. The C-terminal part, comprised of 278 aa, was expressed in Escherichia coli, and antibodies affinity purified on recombinant NcMIC1 were used to confirm the localization within the micronemes by immunofluorescence and immunogold transmission electron microscopy of tachyzoites. Immunohistochemistry of mouse brains infected with tissue cysts showed that expression of this protein is reduced in the bradyzoite stage. Upon initiation of secretion by elevating the temperature to 37°C, NcMIC1 is released into the medium supernatant. NcMIC1 binds to trypsinized, rounded Vero cells, as well as to Vero cell monolayers. Removal of glycosaminoglycans from the host cell surface and modulation of host cell surface glycosaminoglycan sulfation significantly reduces the binding of NcMIC1 to the host cell surface. Solid-phase binding assays employing defined glycosaminoglycans confirmed that NcMIC1 binds to sulfated glycosaminoglycans.


2005 ◽  
Vol 73 (2) ◽  
pp. 841-848 ◽  
Author(s):  
J. Russell Hayman ◽  
Timothy R. Southern ◽  
Theodore E. Nash

ABSTRACT Microsporidia are obligate intracellular opportunistic protists that infect a wide variety of animals, including humans, via environmentally resistant spores. Infection requires that spores be in close proximity to host cells so that the hollow polar tube can pierce the cell membrane and inject the spore contents into the cell cytoplasm. Like other eukaryotic microbes, microsporidia may use specific mechanisms for adherence in order to achieve target cell proximity and increase the likelihood of successful infection. Our data show that Encephalitozoon intestinalis exploits sulfated glycans such as the cell surface glycosaminoglycans (GAGs) in selection of and attachment to host cells. When exogenous sulfated glycans are used as inhibitors in spore adherence assays, E. intestinalis spore adherence is reduced by as much as 88%. However, there is no inhibition when nonsulfated glycans are used, suggesting that E. intestinalis spores utilize sulfated host cell glycans in adherence. These studies were confirmed by exposure of host cells to xylopyranoside, which limits host cell surface GAGs, and sodium chlorate, which decreases surface sulfation. Spore adherence studies with CHO mutant cell lines that are deficient in either surface GAGs or surface heparan sulfate also confirmed the necessity of sulfated glycans. Furthermore, when spore adherence is inhibited, host cell infection is reduced, indicating a direct association between spore adherence and infectivity. These data show that E. intestinalis specifically adheres to target cells by way of sulfated host cell surface GAGs and that this mechanism serves to enhance infectivity.


2012 ◽  
Vol 80 (5) ◽  
pp. 1753-1758 ◽  
Author(s):  
Haili Zhang ◽  
Fengguang Guo ◽  
Guan Zhu

ABSTRACTCryptosporidium parvumis an opportunistic pathogen in AIDS patients. It is an intracellular but extracytoplasmic parasite residing in a host cell-derived parasitophorous vacuole. It is still poorly understood how this parasite interacts with host cells. We observed that expression of the integrin α2 (ITGA2) gene in host cells was significantly upregulated uponC. parvuminfection, and a higher level of ITGA2 protein was present in the parasite infection sites. The infection could be reduced by the treatment of antibodies against ITGA2 and integrin β1 (ITGB1) subunits, as well as by type I collagen (an integrin α2β1 ligand). We also generated stable knockdown of ITGA2 gene expression in HCT-8 cells and observed consistent reduction of parasite infection in these knockdown cells. Collectively, our evidence indicates that host cell ITGA2 might be involved in interacting withCryptosporidiumduring infection, probably acting as part of the regulatory elements upstream of the reported recruiting and reorganization of F actin at the infection sites.


2019 ◽  
Author(s):  
Senlian Hong ◽  
Geramie Grande ◽  
Chenhua Yu ◽  
Digantkumar G. Chapla ◽  
Natalie Reigh ◽  
...  

AbstractHost cell-surface glycans play critical roles in influenza A virus (IAV) infection ranging from modulation of IAV attachment to membrane fusion and host tropism. Approaches for quick and sensitive profiling of the viral avidity towards a specific type of host-cell glycan can contribute to the understanding of tropism switching among different strains of IAV. In this study, we developed a method based on chemoenzymatic glycan engineering to investigate the possible involvement of α1-2-fucosides in IAV infections. Using a truncated human fucosyltransferase 1 (hFuT1), we were able to create α1-2-linked fucosides in situ on the host cell surface to assess their influence on the host cell binding to IAV hemagglutinin and the susceptibility of host cells toward IAV induced killing. We discovered that the newly added α1-2-fucosides on host cells enhanced the infection of several human pandemic IVA subtypes. These findings suggest that glycan epitopes other than sialic aicds should be taken into consideration for assessing the human pandemic risk of this viral pathogen.


2018 ◽  
Author(s):  
Mahendra Prajapat ◽  
Samridhi Pathak ◽  
Ricka Gauba ◽  
Avinash Kale ◽  
Supreet Saini

AbstractPlasmodium parasite, a representative member of phylum Apicomplexa is a causative agent of malaria in human as well as other animals. To infect host cells, Plasmodium first finds receptors on the host cell surface, then binds specifically, and finally penetrates host cell membrane to acquire the host cellular resources. The motility for moving on the cell surface is equipped by the precise and tight control of actin treadmill. Several regulators are required to achieve precision and robustness in the control of actin treadmill. However, the mechanistic detail of the treadmill regulatory network and the cross-talk among regulators are not well understood. We developed a stochastic model of treadmill regulation and explored the dynamics of filament growth, nucleation time, and elongation time. Our study mainly highlighted on how and what helps cells to maintain an average size of the actin filaments within a species. This is particularly important, since, excessive growth of filament can lead to cell lysis. Moreover, we also explore how the regulators interact to fine-tune the control elements in the actin treadmill.


2019 ◽  
Vol 116 (43) ◽  
pp. 21354-21360 ◽  
Author(s):  
Anand Kumar Rai ◽  
Patricia J. Johnson

Trichomonas vaginalis, a human-infective parasite, causes the most prevalent nonviral sexually transmitted infection worldwide. This pathogen secretes extracellular vesicles (EVs) that mediate its interaction with host cells. Here, we have developed assays to study the interface between parasite EVs and mammalian host cells and to quantify EV internalization by mammalian cells. We show that T. vaginalis EVs interact with glycosaminoglycans on the surface of host cells and specifically bind to heparan sulfate (HS) present on host cell surface proteoglycans. Moreover, competition assays using HS or removal of HS from the host cell surface strongly inhibit EV uptake, directly demonstrating that HS proteoglycans facilitate EV internalization. We identified an abundant protein on the surface of T. vaginalis EVs, 4-α-glucanotransferase (Tv4AGT), and show using isothermal titration calorimetry that this protein binds HS. Tv4AGT also competitively inhibits EV uptake, defining it as an EV ligand critical for EV internalization. Finally, we demonstrate that T. vaginalis EV uptake is dependent on host cell cholesterol and caveolin-1 and that internalization proceeds via clathrin-independent, lipid raft-mediated endocytosis. These studies reveal mechanisms used to drive host:pathogen interactions and further our understanding of how EVs are internalized by target cells to allow cross-talk between different cell types.


2021 ◽  
Vol 41 (10) ◽  
Author(s):  
Vipul Kumar ◽  
Anissa Nofita Sari ◽  
Hazna Noor Meidinna ◽  
Jaspreet Kaur Dhanjal ◽  
Chandru Subramani ◽  
...  

Abstract Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a global health emergency. Although new vaccines have been generated and being implicated, discovery and application of novel preventive and control measures are warranted. We aimed to identify compounds that may possess the potential to either block the entry of virus to host cells or attenuate its replication upon infection. Using host cell surface receptor expression (angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2)) analysis as an assay, we earlier screened several synthetic and natural compounds and identified candidates that showed ability to down-regulate their expression. Here, we report experimental and computational analyses of two small molecules, Mortaparib and MortaparibPlus that were initially identified as dual novel inhibitors of mortalin and PARP-1, for their activity against SARS-CoV-2. In silico analyses showed that MortaparibPlus, but not Mortaparib, stably binds into the catalytic pocket of TMPRSS2. In vitro analysis of control and treated cells revealed that MortaparibPlus caused down-regulation of ACE2 and TMPRSS2; Mortaparib did not show any effect. Furthermore, computational analysis on SARS-CoV-2 main protease (Mpro) that also predicted the inhibitory activity of MortaparibPlus. However, cell-based antiviral drug screening assay showed 30–60% viral inhibition in cells treated with non-toxic doses of either MortaparibPlus or Mortaparib. The data suggest that these two closely related compounds possess multimodal anti-COVID-19 activities. Whereas MortaparibPlus works through direct interactions/effects on the host cell surface receptors (ACE2 and TMPRSS2) and the virus protein (Mpro), Mortaparib involves independent mechanisms, elucidation of which warrants further studies.


Sign in / Sign up

Export Citation Format

Share Document