scholarly journals Relationship of type 1 pilus expression in Escherichia coli to ascending urinary tract infections in mice.

1987 ◽  
Vol 55 (2) ◽  
pp. 373-380 ◽  
Author(s):  
A J Schaeffer ◽  
W R Schwan ◽  
S J Hultgren ◽  
J L Duncan
2013 ◽  
Vol 196 (5) ◽  
pp. 931-939 ◽  
Author(s):  
A. Reisner ◽  
M. Maierl ◽  
M. Jorger ◽  
R. Krause ◽  
D. Berger ◽  
...  

2001 ◽  
Vol 69 (7) ◽  
pp. 4572-4579 ◽  
Author(s):  
Matthew A. Mulvey ◽  
Joel D. Schilling ◽  
Scott J. Hultgren

ABSTRACT The vast majority of urinary tract infections are caused by strains of uropathogenic Escherichia coli that encode filamentous adhesive organelles called type 1 pili. These structures mediate both bacterial attachment to and invasion of bladder epithelial cells. However, the mechanism by which type 1 pilus-mediated bacterial invasion contributes to the pathogenesis of a urinary tract infection is unknown. Here we show that type 1-piliated uropathogens can invade the superficial epithelial cells that line the lumenal surface of the bladder and subsequently replicate, forming massive foci of intracellular E. coli termed bacterial factories. In response to infection, superficial bladder cells exfoliate and are removed with the flow of urine. To avoid clearance by exfoliation, intracellular uropathogens can reemerge and eventually establish a persistent, quiescent bacterial reservoir within the bladder mucosa that may serve as a source for recurrent acute infections. These observations suggest that urinary tract infections are more chronic and invasive than generally assumed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2247
Author(s):  
Pawel Kallas ◽  
Håvard J Haugen ◽  
Nikolaj Gadegaard ◽  
John Stormonth-Darling ◽  
Mats Hulander ◽  
...  

Bacterial fimbriae are an important virulence factor mediating adhesion to both biotic and abiotic surfaces and facilitating biofilm formation. The expression of type 1 fimbriae of Escherichia coli is a key virulence factor for urinary tract infections and catheter-associated urinary tract infections, which represent the most common nosocomial infections. New strategies to reduce adhesion of bacteria to surfaces is therefore warranted. The aim of the present study was to investigate how surfaces with different nanotopography-influenced fimbriae-mediated adhesion. Surfaces with three different nanopattern surface coverages made in polycarbonate were fabricated by injection molding from electron beam lithography nanopatterned templates. The surfaces were constructed with features of approximately 40 nm width and 25 nm height with 100 nm, 250 nm, and 500 nm interspace distance, respectively. The role of fimbriae type 1-mediated adhesion was investigated using the E. coli wild type BW25113 and ΔfimA (with a knockout of major pilus protein FimA) and ΔfimH (with a knockout of minor protein FimH) mutants. For the surfaces with nanotopography, all strains adhered least to areas with the largest interpillar distance (500 nm). For the E. coli wild type, no difference in adhesion between surfaces without pillars and the largest interpillar distance was observed. For the deletion mutants, increased adhesion was observed for surfaces without pillars compared to surfaces with the largest interpillar distance. The presence of a fully functional type 1 fimbria decreased the bacterial adhesion to the nanopatterned surfaces in comparison to the mutants.


mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Sarah E. Greene ◽  
Michael E. Hibbing ◽  
James Janetka ◽  
Swaine L. Chen ◽  
Scott J. Hultgren

ABSTRACTUropathogenicEscherichia coli(UPEC) is the primary cause of community-acquired urinary tract infections (UTIs). UPEC bind the bladder using type 1 pili, encoded by thefimoperon in nearly allE. coli. Assembled type 1 pili terminate in the FimH adhesin, which specifically binds to mannosylated glycoproteins on the bladder epithelium. Expression of type 1 pili is regulated in part by phase-variable inversion of the genomic element containing thefimSpromoter, resulting in phase ON (expressing) and OFF (nonexpressing) orientations. Type 1 pili are essential for virulence in murine models of UTI; however, studies of urine samples from human UTI patients demonstrate variable expression of type 1 pili. We provide insight into this paradox by showing that human urine specifically inhibits both expression and function of type 1 pili. Growth in urine induces thefimSphase OFF orientation, preventingfimexpression. Urine also contains inhibitors of FimH function, and this inhibition leads to a further bias infimSorientation toward the phase OFF state. The dual effect of urine onfimSregulation and FimH binding presents a potential barrier to type 1 pilus-mediated colonization and invasion of the bladder epithelium. However, FimH-mediated attachment to human bladder cells during growth in urine reverses these effects such thatfimexpression remains ON and/or turns ON. Interestingly, FimH inhibitors called mannosides also induce thefimSphase OFF orientation. Thus, the transduction of FimH protein attachment or inhibition into epigenetic regulation of type 1 pilus expression has important implications for the development of therapeutics targeting FimH function.IMPORTANCEUrinary tract infections (UTIs) are extremely common infections, frequently caused by uropathogenicEscherichia coli(UPEC), that are treated with antibiotics but often recur. Therefore, UTI treatment both is complicated by and contributes to bacterial antibiotic resistance. Thus, it is important to understand UTI pathogenesis to devise novel strategies and targets for prevention and treatment. Based on evidence from disease epidemiology and mouse models of infection, UPEC relies heavily on type 1 pili to attach to and invade the bladder epithelium during initial stages of UTI. Here, we demonstrate that the negative effect of planktonic growth in human urine on both the function and expression of type 1 pili is overcome by attachment to bladder epithelial cells, representing a strategy to subvert this alternative innate defense mechanism. Furthermore, this dually inhibitory action of urine is a mechanism shared with recently developed anti-type 1 pilus molecules, highlighting the idea that further development of antivirulence strategies targeting pili may be particularly effective for UPEC.


2014 ◽  
Vol 11 (4) ◽  
pp. 1475-1480
Author(s):  
Baghdad Science Journal

Adhesion (type 1 fimbriae) and host defense avoidance mechanisms (capsule or lipopolysaccharide) have been shown to be prevalent in Escherichia coli isolates associated with urinary tract infections. In this work, 50 uropathogenic Escherichia coli (UPEC) isolated from children with urinary tract infections were genotypically characterized by polymerase chain reaction (PCR) assay. We used two genes; fimH and kpsMTII, both of them previously identified in uropathogenic E.coli (UPEC) isolates. The PCR assay results identified fimH (90.0)% and kpsMTII (72.0)% isolates. In the present study, was also demonstrated that these genes may be included in both or one of them within a single isolate.


Sign in / Sign up

Export Citation Format

Share Document