scholarly journals Urease Plays an Important Role in the Chemotactic Motility of Helicobacter pylori in a Viscous Environment

1998 ◽  
Vol 66 (10) ◽  
pp. 4832-4837 ◽  
Author(s):  
Hiroki Nakamura ◽  
Hironori Yoshiyama ◽  
Hiroaki Takeuchi ◽  
Tomoko Mizote ◽  
Kiwamu Okita ◽  
...  

ABSTRACT Helicobacter pylori exhibits chemotactic responses to urea, flurofamide, acetohydroxamic acid, and sodium bicarbonate. In buffer, the chemotactic activities of a urease-positive strain were higher than those of the isogenic urease-negative strain. Moreover, the chemotactic activities of the urease-positive strain were increased in a viscous solution containing 3% polyvinylpyrrolidone, whereas those of the urease-negative mutant were not. These results are in accordance with the fact that the mutant strain did not show swarming in motility agar regardless of having flagella. Incubation of the wild-type strain with flurofamide resulted in partial inhibition of the chemotactic activities in the viscous solution. In addition, incubation with acetohydroxamic acid, a low-molecular-weight, diffusible urease inhibitor, resulted in complete loss of chemotactic activity in the viscous solution. The inhibition of the chemotactic activity by urease inhibitors paralleled the inhibition of urease. The chemotactic activity of H. pylori was also inhibited by the proton carrier carbonyl cyanide m-chlorophenylhydrazone, showing that H. pylori utilizes proton motive force for motility. These results indicate that cytoplasmic urease plays an important role in the chemotactic motility of H. pylori under a condition that mimics the ecological niche of the bacterium, the gastric mucous layer.

2021 ◽  
Vol 7 (3) ◽  
pp. 045-053
Author(s):  
Masaaki Minami ◽  
Shin-nosuke Hashikawa ◽  
Takafumi Ando ◽  
Hiroshi Kobayashi ◽  
Hidemi Goto ◽  
...  

Helicobacter pylori (H. pylori) urease generates both ammonia (NH3) and carbon dioxide (CO2) from urea. NH3 helps H. pylori to survive in the stomach in part by neutralizing gastric acid. However, the relationship between CO2 and H. pylori is not completed cleared. We examined the effect of CO2 generated by urease on multiplication of H. pylori by using isogenic ureB mutant and ureB complemented strain from H. pylori strain JP26. Wild-type strain survived in the medium supplement with 1mM urea in room air, however, the urease negative strain did not. To discern whether CO2 was incorporated into H. pylori, 14C in bacillus was counted after 6 hours incubation with 14C urea in both acidic and neutral medium. Significant more 14C uptake was detected in wild-type strain compared to ureB mutant strain and this uptake in the wild-type strain was more under acidic condition compared to under neutral condition, but no difference was identified in the mutant strain. These results suggest that CO2 generated by urease plays a role in multiplication of H. pylori.


2006 ◽  
Vol 74 (5) ◽  
pp. 3052-3059 ◽  
Author(s):  
John T. Loh ◽  
Timothy L. Cover

ABSTRACT In this study, we investigated a potential requirement of two-component signal transduction systems for acid resistance in Helicobacter pylori. In comparison to a wild-type strain, isogenic strains with null mutations in either HP0165 or HP1364 histidine kinases were impaired in their ability to grow at pH 5.0. The growth of complemented mutant strains was similar to that of the wild-type strain. H. pylori DNA array analyses and transcriptional reporter assays indicated that acid-responsive gene transcription was altered in the HP0165 and HP1364 null mutant strains compared to the parental wild-type strain. These results indicate that intact HP0165 and HP1364 histidine kinases are required for acid resistance in H. pylori.


2004 ◽  
Vol 53 (5) ◽  
pp. 375-379 ◽  
Author(s):  
Ramon de Jonge ◽  
Zarmina Durrani ◽  
Sjoerd G. Rijpkema ◽  
Ernst J. Kuipers ◽  
Arnoud H.M. van Vliet ◽  
...  

The human gastric pathogen Helicobacter pylori expresses several putative outer-membrane proteins (OMPs), but the role of individual OMPs in colonization of the stomach by H. pylori is still poorly understood. The role of four such OMPs (AlpA, AlpB, OipA and HopZ) in a guinea pig model of H. pylori infection has been investigated. Single alpA, alpB, hopZ and oipA isogenic mutants were constructed in the guinea pig-adapted, wild-type H. pylori strain GP15. Guinea pigs were inoculated intragastrically with the wild-type strain, single mutants or a mixture of the wild-type and a single mutant in a 1 : 1 ratio. Three weeks after infection, H. pylori could be isolated from stomach sections of all animals that were infected with the wild-type, the hopZ mutant or the oipA mutant, but from only five of nine (P = 0.18) and one of seven (P = 0.02) animals that were infected with the alpA or alpB mutants, respectively. The hopZ and oipA mutants colonized the majority of animals that were inoculated with the strain mixture, whereas alpA and alpB mutants could not be isolated from animals that were infected with the strain mixture (P < 0.01). Specific IgG antibody responses were observed in all animals that were infected with either the wild-type or a mutant, but IgG levels were lower in animals that were infected with either the alpA or the alpB mutants, compared to the wild-type strain (P < 0.05). In conclusion, absence of AlpA or AlpB is a serious disadvantage for colonization of the stomach by H. pylori.


2011 ◽  
Vol 79 (8) ◽  
pp. 3106-3116 ◽  
Author(s):  
Olga A. Senkovich ◽  
Jun Yin ◽  
Viktoriya Ekshyyan ◽  
Carolyn Conant ◽  
James Traylor ◽  
...  

ABSTRACTHelicobacter pyloripersistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a fewH. pyloriadhesins have been paired with targets in host tissue. ThealpABlocus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation ofH. pyloriAlpA and AlpB reduces binding ofH. pylorito laminin while expression of plasmid-bornealpAoralpBconfers laminin-binding ability toEscherichia coli. AnH. pyloristrain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute toH. pylorilaminin binding. Contrary to expectations, theH. pyloriSS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring duringH. pyloriinfection.


2010 ◽  
Vol 78 (7) ◽  
pp. 3073-3082 ◽  
Author(s):  
Shana Miles ◽  
M. Blanca Piazuelo ◽  
Cristina Semino-Mora ◽  
Mary Kay Washington ◽  
Andre Dubois ◽  
...  

ABSTRACT Helicobacter pylori persistently colonizes the harsh and dynamic environment of the stomach in over one-half of the world's population and has been identified as a causal agent in a spectrum of pathologies that range from gastritis to invasive adenocarcinoma. The ferric uptake regulator (Fur) is one of the few regulatory proteins that has been identified in H. pylori. Fur regulates genes important for acid acclimation and oxidative stress and has been shown to be important for colonization of H. pylori in both murine and Mongolian gerbil models of infection. To more thoroughly define the role of Fur in vivo, we conducted an extensive temporal analysis of the location of, competitive ability of, and resultant pathology induced by a Δfur strain in the Mongolian gerbil model of infection and compared the results to results for its wild-type parent. We found that at the earliest time points postinfection, significantly more Δfur bacteria than wild-type bacteria were recovered. However, this trend was reversed by day 3, when there was significantly increased recovery of the wild-type strain. The increased recovery of the Δfur strain at 1 day postinfection reflected increased recovery from both the corpus and the antrum of the stomach. When the wild-type strain was allowed to colonize first, the Δfur strain was unable to compete for colonization at any time postinfection. However, when the Δfur strain was allowed to colonize first, the wild type efficiently outcompeted the Δfur strain only at early times postinfection. Finally, we demonstrated that there was a delay in the development and severity of inflammation and pathology of the Δfur strain in the gastric mucosa even after comparable levels of colonization occurred. Together, these data indicate that H. pylori Fur is most important at early stages of infection and illustrate the importance of the ability of H. pylori to adapt to its constantly fluctuating environment when it is establishing infection, inflammation, and disease.


2007 ◽  
Vol 76 (2) ◽  
pp. 497-509 ◽  
Author(s):  
Stéphanie Bury-Moné ◽  
George L. Mendz ◽  
Graham E. Ball ◽  
Marie Thibonnier ◽  
Kerstin Stingl ◽  
...  

ABSTRACT Carbon dioxide occupies a central position in the physiology of Helicobacter pylori owing to its capnophilic nature, the large amounts of carbon dioxide produced by urease-mediated urea hydrolysis, and the constant bicarbonate supply in the stomach. Carbonic anhydrases (CA) catalyze the interconversion of carbon dioxide and bicarbonate and are involved in functions such as CO2 transport or trapping and pH homeostasis. H. pylori encodes a periplasmic α-CA (α-CA-HP) and a cytoplasmic β-CA (β-CA-HP). Single CA inactivation and double CA inactivation were obtained for five genetic backgrounds, indicating that H. pylori CA are not essential for growth in vitro. Bicarbonate-carbon dioxide exchange rates were measured by nuclear magnetic resonance spectroscopy using lysates of parental strains and CA mutants. Only the mutants defective in the α-CA-HP enzyme showed strongly reduced exchange rates. In H. pylori, urease activity is essential for acid resistance in the gastric environment. Urease activity measured using crude cell extracts was not modified by the absence of CA. With intact CA mutant cells incubated in acidic conditions (pH 2.2) in the presence of urea there was a delay in the increase in the pH of the incubation medium, a phenotype most pronounced in the absence of H. pylori α-CA. This correlated with a delay in acid activation of the urease as measured by slower ammonia production in whole cells. The role of CA in vivo was examined using the mouse model of infection with two mouse-adapted H. pylori strains, SS1 and X47-2AL. Compared to colonization by the wild-type strain, colonization by X47-2AL single and double CA mutants was strongly reduced. Colonization by SS1 CA mutants was not significantly different from colonization by wild-type strain SS1. However, when mice were infected by SS1 Δ(β-CA-HP) or by a SS1 double CA mutant, the inflammation scores of the mouse gastric mucosa were strongly reduced. In conclusion, CA contribute to the urease-dependent response to acidity of H. pylori and are required for high-grade inflammation and efficient colonization by some strains.


1999 ◽  
Vol 181 (18) ◽  
pp. 5572-5580 ◽  
Author(s):  
Takafumi Ando ◽  
Dawn A. Israel ◽  
Kazuo Kusugami ◽  
Martin J. Blaser

ABSTRACT Helicobacter pylori is naturally competent for DNA transformation, but the mechanism by which transformation occurs is not known. For Haemophilus influenzae, dprA is required for transformation by chromosomal but not plasmid DNA, and the complete genomic sequence of H. pylori 26695 revealed adprA homolog (HP0333). Examination of genetic databases indicates that DprA homologs are present in a wide variety of bacterial species. To examine whether HP0333 has a function similar todprA of H. influenzae, HP0333, present in each of 11 strains studied, was disrupted in two H. pyloriisolates. For both mutants, the frequency of transformation by H. pylori chromosomal DNA was markedly reduced, but not eliminated, compared to their wild-type parental strains. Mutation of HP0333 also resulted in a marked decrease in transformation frequency by a shuttle plasmid (pHP1), which differs from the phenotype described in H. influenzae. Complementation of the mutant with HP0333 inserted intrans in the chromosomal ureAB locus completely restored the frequency of transformation to that of the wild-type strain. Thus, while dprA is required for high-frequency transformation, transformation also may occur independently of DprA. The presence of DprA homologs in bacteria known not to be naturally competent suggests a broad function in DNA processing.


1998 ◽  
Vol 66 (10) ◽  
pp. 4856-4866 ◽  
Author(s):  
Hans-Peter Wirth ◽  
Michael H. Beins ◽  
Manqiao Yang ◽  
Kyi T. Tham ◽  
Martin J. Blaser

ABSTRACT Experimental Helicobacter pylori infection was studied in Mongolian gerbils with fresh human isolates that carry or do not carry cagA (cagA-positive orcagA-negative, respectively), multiply passaged laboratory strains, wild-type strain G1.1, or isogenic ureA,cagA, or vacA mutants of G1.1. Animals were sacrificed 1 to 32 weeks after challenge, the stomach was removed from each animal for quantitative culture, urease test, and histologic testing, and blood was collected for antibody determinations. No colonization occurred after ≥20 in vitro passages of wild-type strain G1.1 or with the ureA mutant of G1.1. In contrast, infection occurred in animals challenged with wild-type G1.1 (99 of 101 animals) or the cagA (25 of 25) or vacA (25 of 29) mutant of G1.1. Infection with G1.1 persisted for at least 8 months. All 15 animals challenged with any of three fresh humancagA-positive isolates became infected, in contrast to only 6 (23%) of 26 animals challenged with one of four fresh humancagA-negative isolates (P < 0.001). Similar to infection in humans, H. pylori colonization of gerbils induced gastric inflammation and a systemic antibody response to H. pylori antigens. These data confirm the utility of gerbils as an animal model of H. pylori infection and indicate the importance of bacterial strain characteristics for successful infection.


2021 ◽  
Vol 8 (3) ◽  
pp. 027-035
Author(s):  
Masaaki Minami ◽  
Shin-nosuke Hashikawa ◽  
Takafumi Ando ◽  
Hiroshi Kobayashi ◽  
Hidemi Goto ◽  
...  

Na+/H+ antiporter plays an important role in maintaining cellular homeostasis by regulating osmotic pressure and intracellular pH. It plays an important role in maintaining cellular homeostasis. In Helicobacter pylori, whole genome sequencing has revealed the presence of two types of Na+/H+ antiporter. A gene (nhaA) homologous to the Na+/H+ antiporter of Escherichia coli has been investigated and its function has been analyzed. However, another gene homologous to the Na+/H+ antiporter of Enterococcus hirae (napA) is not yet known in detail. In this study, we investigated the function of this gene (napA in H. pylori). First, to confirm the genetic presence of napA in 20 H. pylori clinical isolates, PCR analysis was performed, and the napA gene was confirmed in all strains. The amount of Na+ extrusion was measured by atomic absorption spectroscopy. The results showed that the Na+ concentration was decreased in the wild-type strain compared to the napA mutant strain. In addition, there was a significant dose-dependent difference in CFU of Na+ concentration in the napA mutant strain compared to the wild-type strain. We examined whether the napA gene is related to motility using both wild-type and napA mutant strains. As a result, in the motility agar test, the bacterial motility observed in the wild-type strain was not observed in the napA mutant strain. However, no difference in flagellar proteins was observed by SDS-PAGE analysis. These results suggest that the napA gene of H. pylori may regulate homeostasis by extruding Na+ and may also regulate motility.


2004 ◽  
Vol 72 (3) ◽  
pp. 1391-1396 ◽  
Author(s):  
Ge Wang ◽  
Robert J. Maier

ABSTRACT Oxidative stress resistance is one of the key properties that enable pathogenic bacteria to survive the toxic reactive oxygen species released by the host. In a previous study characterizing oxidative stress resistance mutants of Helicobacter pylori, a novel potential antioxidant protein (MdaB) was identified by the observation that the expression of this protein was significantly upregulated to compensate for the loss of other major antioxidant components. In this study, we characterized an H. pylori mdaB mutant and the MdaB protein. While the wild-type strain can tolerate 10% oxygen for growth, the growth of the mdaB mutant was significantly inhibited by this oxygen condition. The mdaB mutant is also more sensitive to H2O2, organic hydroperoxides, and the superoxide-generating agent paraquat. Although the wild-type strain can survive more than 10 h of air exposure, exposure of the mutant strain to air for 8 h resulted in recovery of no viable cells. The oxidative stress sensitivity of the mdaB mutant resulted in a deficiency in the ability to colonize mouse stomachs. H. pylori was recovered from 10 of 11 mouse stomachs inoculated with the wild-type strain, with about 5,000 to 45,000 CFU/g of stomach. However, only 3 of 12 mice that were inoculated with the mdaB mutant strain were found to harbor any H. pylori, and these 3 contained less than 2,000 CFU/g of stomach. A His-tagged MdaB protein was purified and characterized. It was shown to be a flavoprotein that catalyzes two-electron transfer from NAD(P)H to quinones. It reduces both ubiquinones and menaquinones with similar efficiencies and preferably uses NADPH as an electron donor. We propose that the physiological function of the H. pylori MdaB protein is that of an NADPH quinone reductase that plays an important role in managing oxidative stress and contributes to successful colonization of the host.


Sign in / Sign up

Export Citation Format

Share Document