scholarly journals Interleukin-10 and Antigen-Presenting Cells Actively Suppress Th1 Cells in BALB/c Mice Infected with the Filarial Parasite Brugia pahangi

1999 ◽  
Vol 67 (4) ◽  
pp. 1599-1605 ◽  
Author(s):  
Julie Osborne ◽  
Eileen Devaney

ABSTRACT Infection with the third-stage larvae (L3) of the filarial nematodeBrugia results in a Th2-biased immune response in mice and humans. Previously we have shown that the production of interleukin 4 (IL-4) is critical for down-regulating polyclonal Th1 responses in L3-infected mice. However, the in vitro neutralization of IL-4 did not fully recover the defective polyclonal Th1 responses, nor did it result in the production of any antigen (Ag)-specific Th1 cytokines, suggesting that perhaps infection with L3 does not result in priming of Th1 cells in vivo. In this study, we analyzed the role of IL-10 and Ag-presenting cells (APCs) in the spleen as additional factors controlling the Th2 bias in infected mice. Our data show that IL-10 and APCs also contribute to the suppression of mitogen-driven Th1 responses of spleen cells from infected mice. In addition, the neutralization of IL-10 or the replacement of the resident APC population from spleen cell cultures resulted in the production of Ag-specific Th1 cytokines. Irradiated spleen cells from either L3-infected or uninfected mice were able to restore Ag-specific Th1 responses in vitro. Therefore, it appears that Brugia-reactive Th1 cells are primed following infection with L3, but are actively suppressed in vivo by a mechanism that involves IL-10 and the resident APC population, but not IL-4. These results indicate that a complex interplay of cytokines and cell populations underscores the Th2-polarized response in L3-infected mice.

2016 ◽  
Vol 96 (2) ◽  
pp. 145-152 ◽  
Author(s):  
A. Iglesias-Linares ◽  
J.K. Hartsfield

External apical root resorption during orthodontic treatment implicates specific molecular pathways that orchestrate nonphysiologic cellular activation. To date, a substantial number of in vitro and in vivo molecular, genomic, and proteomic studies have supplied data that provide new insights into root resorption. Recent mechanisms and developments reviewed here include the role of the cellular component—specifically, the balance of CD68+, iNOS+ M1- and CD68+, CD163+ M2-like macrophages associated with root resorption and root surface repair processes linked to the expression of the M1-associated proinflammatory cytokine tumor necrosis factor, inducible nitric oxide synthase, the M1 activator interferon γ, the M2 activator interleukin 4, and M2-associated anti-inflammatory interleukin 10 and arginase I. Insights into the role of mesenchymal dental pulp cells in attenuating dentin resorption in homeostasis are also reviewed. Data on recently deciphered molecular pathways are reviewed at the level of (1) clastic cell adhesion in the external apical root resorption process and the specific role of α/β integrins, osteopontin, and related extracellular matrix proteins; (2) clastic cell fusion and activation by the RANKL/RANK/OPG and ATP-P2RX7-IL1 pathways; and (3) regulatory mechanisms of root resorption repair by cementum at the proteomic and transcriptomic levels.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


1996 ◽  
Vol 184 (3) ◽  
pp. 803-810 ◽  
Author(s):  
D R Brown ◽  
J M Green ◽  
N H Moskowitz ◽  
M Davis ◽  
C B Thompson ◽  
...  

The role of CD28-mediated signals in T helper cell maturation is not fully understood. We tested the requirement for costimulation through CD28 in several systems of CD4+, T cell differentiation. In vivo priming of mice with genetic disruption of CD28 (CD28-/-) yielded normal levels of antigen-specific interferon gamma production but markedly diminished levels of interleukin 4 (IL-4) after in vitro restimulation. In response to the pathogenic microbe, Leishman a major, C57BL6 CD28-/- mice were fully capable of controlling infection and exhibited a normal T helper 1 response. BALB/c CD28-/- mice unexpectedly exhibited normal susceptibility to L. major. BALB/c CD28-/- mice developed high levels of IL-4 mRNA and protein induction in the draining lymph nodes. In addition, susceptibility of BALB/c CD28-/- mice was reversed by neutralization of IL-4 in vivo. We also activated transgenic CD28-bearing T cells from the BALB and C57BL background in vitro in the presence of CTLA4Ig. BALB cells had greater IL-4 producing capacity than C57BL cells in the absence of costimulation. Diverse factors including costimulatory signals, genetic polymorphism, and the nature of the immunogen all influence T helper phenotype commitment, but these results provide evidence that CD28 is not an absolute requirement for generating either Th1 or Th2 responses.


Blood ◽  
2005 ◽  
Vol 106 (6) ◽  
pp. 2011-2017 ◽  
Author(s):  
Shigeaki Hida ◽  
Masumi Tadachi ◽  
Takashi Saito ◽  
Shinsuke Taki

Abstract Although basophils are known to produce interleukin 4 (IL-4), the roles of these cells have been documented only in mice infected with parasites or in the effector phase of allergic inflammations. Here we show that naive mice lacking the transcription factor, interferon regulatory factor 2 (IRF-2), exhibited signal transducer and activator of transcription 6 (Stat6)–independent expansion of basophils in the periphery. IRF-2 appeared to act autonomously in the cells to negatively regulate the expansion of, but not cytokine production by, basophils. Spontaneous Th2 polarization of CD4+ T cells was observed in these mice and the genetic reduction of basophil numbers by mutating the Kit gene abolished such a polarization in vivo. We also found that both basophils and IL-4 derived from them were indeed essential for Th2 development under neutral conditions in vitro. Furthermore, neutralization of IL-3 abolished IL-4 production by basophils during Th1/Th2 differentiation cultures and subsequent Th2 development. These results indicated that basophils acted as a cellular converter to turn the neutral IL-3 into the Th2-inducing IL-4 during the initiation of Th1/Th2 differentiation. Thus, the negative regulatory role of IRF-2 on the basophil population size is critically important for preventing excess Th2 polarization and the Th1/Th2 balance in naive animals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jordan Mattke ◽  
Srividya Vasu ◽  
Carly M. Darden ◽  
Kenjiro Kumano ◽  
Michael C. Lawrence ◽  
...  

Exosomes are known for their ability to transport nucleic acid, lipid, and protein molecules, which allows for communication between cells and tissues. The cargo of the exosomes can have a variety of effects on a wide range of targets to mediate biological function. Pancreatic islet transplantation is a minimally invasive cell replacement therapy to prevent or reverse diabetes mellitus and is currently performed in patients with uncontrolled type 1 diabetes or chronic pancreatitis. Exosomes have become a focus in the field of islet transplantation for the study of diagnostic markers of islet cell viability and function. A growing list of miRNAs identified from exosomes collected during the process of isolating islets can be used as diagnostic biomarkers of islet stress and damage, leading to a better understanding of critical steps of the isolation procedure that can be improved to increase islet yield and quality. Exosomes have also been implicated as a possible contributor to islet graft rejection following transplantation, as they carry donor major histocompatibility complex molecules, which are then processed by recipient antigen-presenting cells and sensed by the recipient immune cells. Exosomes may find their way into the therapeutic realm of islet transplantation, as exosomes isolated from mesenchymal stem cells have shown promising results in early studies that have seen increased viability and functionality of isolated and grafted islets in vitro as well as in vivo. With the study of exosomes still in its infancy, continued research on the role of exosomes in islet transplantation will be paramount to understanding beta cell regeneration and improving long-term graft function.


Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 22 ◽  
Author(s):  
Beatriz Escudero-Pérez ◽  
César Muñoz-Fontela

Filoviruses, such as Ebola and Marburg virus, encode viral proteins with the ability to counteract the type I interferon (IFN-I) response. These IFN-I antagonist proteins are crucial to ensure virus replication, prevent an antiviral state in infected and bystander cells, and impair the ability of antigen-presenting cells to initiate adaptive immune responses. However, in recent years, a number of studies have underscored the conflicting data between in vitro studies and in vivo data obtained in animal models and clinical studies during outbreaks. This review aims to summarize these data and to discuss the relative contributions of IFN-α and IFN-β to filovirus pathogenesis in animal models and humans. Finally, we evaluate the putative utilization of IFN-I in post-exposure therapy and its implications as a biomarker of vaccine efficacy.


1987 ◽  
Author(s):  
J H Nuijens ◽  
C C M Huijbregets ◽  
L G Thijs ◽  
C E Hack

Levels of factor XIIa- and kallikrein-Cl inhibitor (Cl-Inh) complexes in plasma reflect activation of the contact system in vivo. Here, we report the development of radioimmunoassays (RIAs) for these complexes using a monoclonal antibody (mAb K0K12) that reacts with a neodeterminant exposed on Cl-Inh after interaction with proteases. mAb K0K12 was obtained by a fusion experiment with spleen cells of a mouse hyperimmunized with Cl-Inh complexes.Experiments with purified Cl-Inh incubated with either Cls or elastase revealed that the determinant for mAb KOK12 is exposed on complexed as well as proteolytically inactivated (modified) Cl-Inh.Radioimmunoassays (RIAs) for the detection of factor Xlla-Cl-Inh and kallikrein-Cl-Inh complexes were performed as follows: mAb K0K12 was coupled to Sepharose and incubated with the sample to be tested. Binding of Cl-Inh complexes was detected by a subsequent incubation with 125I-antibodies against factor XII or (pre)kallikrein.With these RIAs, activation of 0.1% of factor XII or prekal-likrein in plasma is easily detected.Optimal conditions for blood sampling and processing were established, i.e. conditions that prevented any in vitro activation of factor XII and prekallikrein. Levels of factor XIIa-Cl-Inh and kallikrein-Cl-Inh complexes in plasma samples from normal donors were less than 0.1 U/ml (100 U/ml is the maximal amount of Cl-Inh complexes generated in pooled plasma by DXS). Considerably higher, and fluctuating levels were observed in patients with diseases such as septicaemia. These highly sensitive RIAs will facilitate studies concerning the role of the contact system in human pathophysiology.


2009 ◽  
Vol 207 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Fangfang Yin ◽  
Rebecca Banerjee ◽  
Bobby Thomas ◽  
Ping Zhou ◽  
Liping Qian ◽  
...  

Progranulin (PGRN) is a widely expressed protein involved in diverse biological processes. Haploinsufficiency of PGRN in the human causes tau-negative, ubiquitin-positive frontotemporal dementia (FTD). However, the mechanisms are unknown. To explore the role of PGRN in vivo, we generated PGRN-deficient mice. Macrophages from these mice released less interleukin-10 and more inflammatory cytokines than wild type (WT) when exposed to bacterial lipopolysaccharide. PGRN-deficient mice failed to clear Listeria monocytogenes infection as quickly as WT and allowed bacteria to proliferate in the brain, with correspondingly greater inflammation than in WT. PGRN-deficient macrophages and microglia were cytotoxic to hippocampal cells in vitro, and PGRN-deficient hippocampal slices were hypersusceptible to deprivation of oxygen and glucose. With age, brains of PGRN-deficient mice displayed greater activation of microglia and astrocytes than WT, and their hippocampal and thalamic neurons accumulated cytosolic phosphorylated transactivation response element DNA binding protein–43. Thus, PGRN is a key regulator of inflammation and plays critical roles in both host defense and neuronal integrity. FTD associated with PGRN insufficiency may result from many years of reduced neutrotrophic support together with cumulative damage in association with dysregulated inflammation.


2020 ◽  
Vol 8 (1) ◽  
pp. e000339 ◽  
Author(s):  
Hongliang Dong ◽  
Yueyao Yang ◽  
Chenhui Gao ◽  
Hehe Sun ◽  
Hongmin Wang ◽  
...  

BackgroundTumor-associated macrophages (TAMs) resemble M2-polarized cells with potent immunosuppressive activity and play a pivotal role in tumor growth and progression. Converting TAMs to proinflammatory M1-like phenotype is thus an attractive strategy for antitumor immunotherapy.MethodsA mouse IgG1(kappa) monoclonal Ab, M-860, specific to human lactoferrin (LTF) was generated by using the traditional hybridoma cell fusion technology. TAMs were generated by culturing human and mouse CD14+monocytes in tumor-conditioned media containing a cytokine cocktail containing recombinant interleukin-4 (IL-4), interleukin-10 (IL-10) and macrophage colony stimulating factor (M-CSF). TAMs after treatment with immunocomplex (IC) between human LTF and M860 (LTF-IC) were phenotypically and functionally characterized by flow cytometry (FACS), ELISA, Q-PCR and killing assays. The antitumor effects of LTF-IC were further analyzed using in vivo experiments employing tumor-bearing human FcγRIIa-transgenic mouse models.ResultsThrough coligation of membrane-bound CD14 and FcγRIIa, LTF-IC rendered TAMs not only M2 to M1 conversion, evidenced by increased tumor necrosis factor α production, down-regulated M2-specific markers (CD206, arginase-1 and vascular endothelial growth factor) and upregulated M1-specific markers (CD86 and HLA-DR) expression, but also potent tumoricidal activity in vitro. LTF-IC administration conferred antitumor protective efficacy and prolonged animal survival in FcγRIIa-transgenic mice, accompanied by accumulation of M1-like macrophages as well as significantly reduced infiltration of immunosuppressive myeloid-derived suppressor cells and regulatory T cells in solid tumor tissues.ConclusionsLTF-IC is a promising cancer therapeutic agent capable of converting TAMs into tumoricidal M1-like cells.


2000 ◽  
Vol 192 (11) ◽  
pp. 1669-1676 ◽  
Author(s):  
Takako Hirata ◽  
Glenn Merrill-Skoloff ◽  
Melissa Aab ◽  
Jing Yang ◽  
Barbara C. Furie ◽  
...  

P-selectin glycoprotein ligand 1 (PSGL-1) is a sialomucin expressed on leukocytes that mediates neutrophil rolling on the vascular endothelium. Here, the role of PSGL-1 in mediating lymphocyte migration was studied using mice lacking PSGL-1. In a contact hypersensitivity model, the infiltration of CD4+ T lymphocytes into the inflamed skin was reduced in PSGL-1–deficient mice. In vitro–generated T helper (Th)1 cells from PSGL-1–deficient mice did not bind to P-selectin and migrated less efficiently into the inflamed skin than wild-type Th1 cells. To assess the role of PSGL-1 in P- or E-selectin–mediated migration of Th1 cells, the cells were injected into E- or P-selectin–deficient mice. PSGL-1–deficient Th1 cells did not migrate into the inflamed skin of E-selectin–deficient mice, indicating that PSGL-1 on Th1 cells is the sole ligand for P-selectin in vivo. In contrast, PSGL-1–deficient Th1 cells migrated into the inflamed skin of P-selectin–deficient mice, although less efficiently than wild-type Th1 cells. This E-selectin–mediated migration of PSGL-1–deficient or wild-type Th1 cells was not altered by injecting a blocking antibody to L-selectin. These data provide evidence that PSGL-1 on Th1 cells functions as one of the E-selectin ligands in vivo.


Sign in / Sign up

Export Citation Format

Share Document