scholarly journals In Situ Analysis of the Evolution of the Primary Immune Response in Murine Chlamydia trachomatis Genital Tract Infection

2000 ◽  
Vol 68 (5) ◽  
pp. 2870-2879 ◽  
Author(s):  
Sandra G. Morrison ◽  
Richard P. Morrison

ABSTRACT Adaptive immune responses contribute to the resolution ofChlamydia trachomatis genital tract infection and protect against reinfection, but our understanding of the mechanisms of those protective responses is incomplete. In this study, we analyzed by in situ immunohistochemistry the progression of the inflammatory and cytokine responses in the genital tracts of mice vaginally infected with C. trachomatis strain mouse pneumonitis. The cellular inflammatory response was characterized by an initial elevation in myeloid cells in the vagina (day 3) and uterine horns (day 7), followed by a marked rise in the number of T cells, predominantly CD4+ cells. CD8+ T cells and CD45R+B cells were also detected but were much less numerous. Perivascular clusters of CD4+ T cells, which resembled clusters of T cells seen in delayed-type hypersensitivity responses, were evident by 2 weeks postinfection. Following the resolution of infection, few CD8+ T cells and CD45R+ B cells remained, whereas numerous CD4+ T cells and perivascular clusters of CD4+ T cells persisted in genital tract tissues. Interleukin-12 (IL-12)- and tumor necrosis factor alpha (TNF-α)-producing cells were observed in vaginal tissue by day 3 of infection and in uterine tissues by day 7. Cells producing IL-4 or IL-10 were absent from vaginal tissues at day 3 of infection but were present in uterine tissues by day 7 and were consistently more numerous than IL-12- and TNF-α-producing cells. Thus, the evolution of the local inflammatory response was characterized by the accumulation of CD4+ T cells into perivascular clusters and the presence of cells secreting both Th1- and Th2-type cytokines. The persistence of CD4+-T-cell clusters long after infection had resolved (day 70) may provide for a readily mobilizable T-cell response by which previously infected animals can quickly respond to and control a secondary infectious challenge.


2001 ◽  
Vol 69 (4) ◽  
pp. 2643-2649 ◽  
Author(s):  
Sandra G. Morrison ◽  
Richard P. Morrison

ABSTRACT The essential role of T cells in the resolution of primary murineChlamydia trachomatis genital tract infection is inarguable; however, much less is known about the mechanisms that confer resistance to reinfection. We previously established that CD4+ T cells and B cells contribute importantly to resistance to reinfection. In our current studies, we demonstrate that immune mice concurrently depleted of both CD4+ T cells and CD8+ T cells resisted reinfection as well as immunocompetent wild-type mice. The in vivo depletion of CD4+ and CD8+ T cells resulted in diminished chlamydia-specific delayed-type hypersensitivity responses, but antichlamydial antibody responses were unaffected. Our data indicate that immunity to chlamydial genital tract reinfection does not rely solely upon immune CD4+ or CD8+ T cells and further substantiate a predominant role for additional effector immune responses, such as B cells, in resistance to chlamydial genital tract reinfection.





Vaccine ◽  
2011 ◽  
Vol 29 (35) ◽  
pp. 5994-6001 ◽  
Author(s):  
Marien I. de Jonge ◽  
Sander A.S. Keizer ◽  
Hicham M. el Moussaoui ◽  
Lieke van Dorsten ◽  
Rima Azzawi ◽  
...  


1997 ◽  
Vol 65 (6) ◽  
pp. 1993-1999 ◽  
Author(s):  
H Su ◽  
K Feilzer ◽  
H D Caldwell ◽  
R P Morrison


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Jennifer D. Helble ◽  
Rodrigo J. Gonzalez ◽  
Ulrich H. von Andrian ◽  
Michael N. Starnbach

ABSTRACT While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host’s ability to sense the cytokine gamma interferon (IFN-γ). However, it is unclear what role NR1 production or sensing of IFN-γ plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis. Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-γ−/−, and IFN-γR−/− NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis. We also determined that protection against infection requires production of IFN-γ from either NR1 T cells or endogenous cells, further highlighting the importance of IFN-γ in clearing C. trachomatis infection. IMPORTANCE Chlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis. Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis.





Sign in / Sign up

Export Citation Format

Share Document