scholarly journals Analysis of Escherichia coli Strains Causing Bacteriuria during Pregnancy: Selection for Strains That Do Not Express Type 1 Fimbriae

2001 ◽  
Vol 69 (2) ◽  
pp. 794-799 ◽  
Author(s):  
J. C. Graham ◽  
J. B. S. Leathart ◽  
S. J. Keegan ◽  
J. Pearson ◽  
A. Bint ◽  
...  

ABSTRACT Escherichia coli isolates from patients with bacteriuria of pregnancy were compared by PCR with isolates from patients with community-acquired cystitis for the presence of established virulence determinants. The strains from patients with bacteriuria of pregnancy were less likely to carry genes for P-family, S-family, and F1C adhesins, cytotoxic necrotizing factor 1, and aerobactin, but virtually all of the strains carried the genes for type 1 fimbriae. Standard mannose-sensitive agglutination of yeast cells showed that only 15 of 42 bacteriuria strains (36%) expressed type 1 fimbriae compared with 32 of 42 strains from community-acquired symptomatic infections (76%) (P < 0.01). This difference was confirmed by analysis of all isolates for an allele of the type 1 fimbrial regulatory region (fim switch), which negates type 1 fimbrial expression by preventing the fimswitch from being inverted to the on phase. This allele,fimS49, was found in 8 of 47 bacteriuria strains from pregnant women (17.0%) compared with 2 of 60 strains isolated from patients with cystitis (3.3%) (P < 0.05). Determination of the phase switch orientation in vivo by analysis of freshly collected infected urine from patients with bacteriuria showed that the fim switch was detectable in the off orientation in 17 of 23 urine samples analyzed (74%). These data indicate that type 1 fimbriae are not necessary to maintain the majority of E. coli bacteriurias in pregnant women since there appears to be selection against their expression in this particular group. This is in contrast to the considered role of this adhesin in community-acquired symptomatic infections. The lack of type 1 fimbria expression is likely to contribute to the asymptomatic nature of bacteriuria in pregnant women, although approximately one-third of the bacteriuria isolates do possess key virulence determinants. If left untreated, this subset of isolates pose the greatest threat to the health of the mother and unborn child.

Microbiology ◽  
2005 ◽  
Vol 151 (10) ◽  
pp. 3287-3298 ◽  
Author(s):  
Caroline Blumer ◽  
Alexandra Kleefeld ◽  
Daniela Lehnen ◽  
Margit Heintz ◽  
Ulrich Dobrindt ◽  
...  

Type 1 fimbriae of Escherichia coli facilitate attachment to the host mucosa and promote biofilm formation on abiotic surfaces. The transcriptional regulator LrhA, which is known as a repressor of flagellar, motility and chemotaxis genes, regulates biofilm formation and expression of type 1 fimbriae. Whole-genome expression profiling revealed that inactivation of lrhA results in an increased expression of structural components of type 1 fimbriae. In vitro, LrhA bound to the promoter regions of the two fim recombinases (FimB and FimE) that catalyse the inversion of the fimA promoter, and to the invertible element itself. Translational lacZ fusions with these genes and quantification of fimE transcript levels by real-time PCR showed that LrhA influences type 1 fimbrial phase variation, primarily via activation of FimE, which is required for the ON-to-OFF transition of the fim switch. Enhanced type 1 fimbrial expression as a result of lrhA disruption was confirmed by mannose-sensitive agglutination of yeast cells. Biofilm formation was stimulated by lrhA inactivation and completely suppressed upon LrhA overproduction. The effects of LrhA on biofilm formation were exerted via the changed levels of surface molecules, most probably both flagella and type 1 fimbriae. Together, the data show a role for LrhA as a repressor of type 1 fimbrial expression, and thus as a regulator of the initial stages of biofilm development and, presumably, bacterial adherence to epithelial host cells also.


1999 ◽  
Vol 67 (2) ◽  
pp. 745-753 ◽  
Author(s):  
Barbara A. Hendrickson ◽  
Jun Guo ◽  
Robert Laughlin ◽  
Yimei Chen ◽  
John C. Alverdy

ABSTRACT Although indigenous bacteria intimately colonize the intestinal mucosa, under normal conditions the intestinal epithelial cell is free of adherent bacteria. Nonetheless, commensal bacteria such asEscherichia coli adhere to and translocate across the intestinal epithelium in association with a number of pathologic states including hemorrhagic shock, immunosuppression, traumatic tissue injury, and lack of enteral feedings. The adhesins involved in the adherence of indigenous E. coli to the intestinal epithelium in vivo following catabolic stress are unknown. We have developed a mouse model to study the bacterial adhesins which mediate the increased intestinal adherence of E. coliafter partial hepatectomy and short-term starvation. Our studies demonstrated that hepatectomy and starvation in the mouse were associated with a 7,500-fold increase in the numbers of E. coli bacteria adhering to the cecum. In addition, erythrocyte agglutination studies, as well as immunostaining of fimbrial preparations and electron micrographs of the bacteria, revealed that surface type 1 fimbriae were more abundant in the commensal E. coli harvested from the ceca of the stressed mice. These E. coli isolates adhered to a mouse colon cell line and injected cecal loops in a mannose-inhibitable manner, which suggests a role for type 1 fimbriae in the adherence of the E. coli isolates to the cecum in vivo following host catabolic stress.


2001 ◽  
Vol 67 (1) ◽  
pp. 464-468 ◽  
Author(s):  
Laura Canesi ◽  
Carla Pruzzo ◽  
Renato Tarsi ◽  
Gabriella Gallo

ABSTRACT The role of type 1 fimbriae in the interactions betweenEscherichia coli and Mytilus galloprovincialisLam. hemocytes was evaluated. The association of fimbriated strain MG155 with hemocyte monolayers at 18°C was 1.5- and 3- to 4-fold greater than the association of unfimbriated mutant AAEC072 in artificial seawater and in hemolymph serum, respectively. Such differences were apparently due to different adhesive properties since MG155 adhered more efficiently than AAEC072 when hemocytes were incubated at 4°C to inhibit the internalization process. Hemolymph serum increased both association and adherence of MG155 two- to threefold but did not affect association and adherence of AAEC072. MG155 was also 1.5- to 1.7-fold more sensitive to killing by hemocytes than AAEC072, as evaluated by the number of culturable bacteria after 60 and 120 min of incubation. The role of type 1 fimbriae in MG155 interactions with hemocytes was confirmed by the inhibitory effect ofd-mannose. In in vivo experiments MG155 cells were cleared from circulating hemolymph more rapidly than AAEC072 cells were cleared. These results confirm that surface properties are crucial in influencing bacterial persistence and survival within mussel hemolymph.


2005 ◽  
Vol 73 (11) ◽  
pp. 7588-7596 ◽  
Author(s):  
Jennifer A. Snyder ◽  
Brian J. Haugen ◽  
C. Virginia Lockatell ◽  
Nathalie Maroncle ◽  
Erin C. Hagan ◽  
...  

ABSTRACT Uropathogenic Escherichia coli is the most common etiological agent of urinary tract infections. Bacteria can often express multiple adhesins during infection in order to favor attachment to specific niches within the urinary tract. We have recently demonstrated that type 1 fimbria, a phase-variable virulence factor involved in adherence, was the most highly expressed adhesin during urinary tract infection. Here, we examine whether the expression of type 1 fimbriae can affect the expression of other adhesins. Type 1 fimbrial phase-locked mutants of E. coli strain CFT073, which harbors genes for numerous adhesins, were employed in this study. CFT073-specific DNA microarray analysis of these strains demonstrates that the expression of type 1 fimbriae coordinately affects the expression of P fimbriae in an inverse manner. This represents evidence for direct communication between genes relating to pathogenesis, perhaps to aid the sequential occupation of different urinary tract tissues. While the role of type 1 fimbriae during infection has been clear, the role of P fimbriae must be further defined to assert the relevance of coordinated regulation in vivo. Therefore, we examined the ability of P fimbrial isogenic mutants, constructed in a type 1 fimbrial-negative background, to compete in the murine urinary tract over a period of 168 h. No differences in the colonization of these mutants were observed. However, comparison of these results with previous studies suggests that inversely coordinated expression of adhesin gene clusters does occur in vivo. Interestingly, the mutant that was incapable of expressing either type 1 or P fimbriae compensated by synthesizing F1C fimbriae.


1998 ◽  
Vol 66 (7) ◽  
pp. 3303-3310 ◽  
Author(s):  
Jean K. Lim ◽  
Nereus W. Gunther ◽  
Hui Zhao ◽  
David E. Johnson ◽  
Susan K. Keay ◽  
...  

ABSTRACT Type 1 fimbriae, expressed by most Escherichia colistrains, are thought to attach to human uroepithelium as an initial step in the pathogenesis of urinary tract infections (UTI). Numerous reports using both in vitro and murine models support this role for type 1 fimbriae in colonization. Unfortunately, only a limited number of studies have directly examined the expression of fimbriae in vivo. To determine whether type 1 fimbrial genes are transcribed during an acute UTI, we employed a modification of an established method. The orientation (ON or OFF) of the invertible promoter element, which drives transcription of type 1 fimbrial genes, was determined by PCR amplification using primers that flank the invertible element, followed by SnaBI digestion. The orientation of the type 1 fimbrial switch was determined under three experimental conditions. First,E. coli strains from different clinical sources (acute pyelonephritis patients, cystitis patients, and fecal controls) were tested under different in vitro culture conditions (agar versus broth; aerated versus static). The genes in the more-virulent strains (those causing acute pyelonephritis) demonstrated a resistance, in aerated broth, to switching from OFF to ON, while those in fecal strains readily switched from OFF to ON. Second, bladder and kidney tissue from CBA mice transurethrally inoculated with E. coli CFT073 (an established murine model of ascending UTI) was assayed. The switches directly amplified from infected bladder and kidney tissues were estimated to be 33 and 39% ON, respectively, by using a standard curve. Finally, bacteria present in urine samples collected from women with cystitis were tested for type 1 fimbria switch orientation. For all 11 cases, an average of only 4% of the switches in the bacteria in the urine were ON. In 7 of the 11 cases, we found that all of the visible type 1 fimbrial switches were in the OFF position (upper limit of detection of assay, 98% OFF). Strains recovered from these urine samples, however, were shown after culture in vitro to be capable of switching the fimbrial gene to the ON position and expressing mannose-sensitive hemagglutinin. The results from experimental infections and cases of cystitis in women suggest that type 1 fimbrial genes are transcribed both in the bladder and in the kidney. However, those bacteria found in the urine and not attached to the uroepithelium are not transcriptionally active for type 1 fimbrial genes.


Microbiology ◽  
2006 ◽  
Vol 152 (4) ◽  
pp. 1143-1153 ◽  
Author(s):  
Nicola J. Holden ◽  
Makrina Totsika ◽  
Eva Mahler ◽  
Andrew J. Roe ◽  
Kirsteen Catherwood ◽  
...  

The majority of Escherichia coli strains isolated from urinary tract infections have the potential to express multiple fimbriae. Two of the most common fimbrial adhesins are type 1 fimbriae and pyelonephritis-associated pili (Pap). Previous research has shown that induced, plasmid-based expression of a Pap regulator, papB, and its close homologues can prevent inversion of the fim switch controlling the expression of type 1 fimbriae. The aim of the present study was to determine if this cross-regulation occurs when PapB is expressed from its native promoter in the chromosome of E. coli K-12 and clinical isolates. The regulation was examined in three ways: (1) mutated alleles of the pap regulatory region, including papB and papI, that maintain the pap promoter in either the off or the on phase were exchanged into the chromosome of both E. coli K-12 and the clinical isolate E. coli CFT073, and the effect on type 1 fimbrial expression was measured; (2) type 1 fimbrial expression was determined using a novel fimS : : gfp + reporter system in mutants of the clinical isolate E. coli 536 in which combinations of complete fimbrial clusters had been deleted; (3) type 1 fimbrial expression was determined in a range of clinical isolates and compared with both the number of P clusters and their expression. All three approaches demonstrated that P expression represses type 1 fimbrial expression. Using a number of novel genetic approaches, this work extends the initial finding that PapB inhibits FimB recombination to the impact of this regulation in clinical isolates.


2007 ◽  
Vol 75 (12) ◽  
pp. 5735-5739 ◽  
Author(s):  
Naveed Ahmed Khan ◽  
Graham John Goldsworthy

ABSTRACT It is shown here for the first time that locusts can be used as a model to study Escherichia coli K1 pathogenesis. E. coli K-12 strain HB101 has very low pathogenicity to locusts and does not invade the locust brain, whereas the injection of 2 × 106 E. coli K1 strain RS218 (O18:K1:H7) kills almost 100% of locusts within 72 h and invades the brain within 24 h of injection. Both mortality and invasion of the brain in locusts after injection of E. coli K1 require at least two of the known virulence determinants shown for mammals. Thus, deletion mutants that lack outer membrane protein A or cytotoxic necrotizing factor 1 have reduced abilities to kill locusts and to invade the locust brain compared to the parent E. coli K1. Interestingly, deletion mutants lacking FimH or the NeuDB gene cluster are still able to cause high mortality. It is argued that the likely existence of additional virulence determinants can be investigated in vivo by using this insect system.


1996 ◽  
Vol 183 (3) ◽  
pp. 1037-1044 ◽  
Author(s):  
M Hedlund ◽  
M Svensson ◽  
A Nilsson ◽  
R D Duan ◽  
C Svanborg

Escherichia coli express fimbriae-associated adhesins through which they attach to mucosal cells and activate a cytokine response. The receptors for E. coli P fimbriae are the globoseries of glycosphingolipids; Gal alpha 1--&gt;4Gal beta-containing oligosaccharides bound to ceramide in the outer leaflet of the lipid bilayer. The receptors for type 1 fimbriae are mannosylated glycoproteins rather than glycolipids. This study tested the hypothesis that P-fimbriated E. coli elicit a cytokine response through the release of ceramide in the receptor-bearing cell. We used the A498 human kidney cell line, which expressed functional receptors for P and type 1 fimbriae and secreted higher levels of interleukin (IL)-6 when exposed to the fimbriated strains than to isogenic nonfimbriated controls. P-fimbriated E. coli caused the release of ceramide and increased the phosphorylation of ceramide to ceramide 1-phosphate. The IL-6 response to P-fimbriated E. coli was reduced by inhibitors of serine/threonine kinases but not by other protein kinase inhibitors. In contrast, ceramide levels were not influenced by type 1-fimbriated E. coli, and the IL-6 response was insensitive to the serine/threonine kinase inhibitors. These results demonstrate that the ceramide-signaling pathway is activated by P-fimbriated E. coli, and that the receptor specificity of the P fimbriae influences this process. We propose that this activation pathway contributes to the cytokine induction by P-fimbriated E. coli in epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document