scholarly journals Differential Binding of Host Complement Inhibitor Factor H by Borrelia burgdorferi Erp Surface Proteins: a Possible Mechanism Underlying the Expansive Host Range of Lyme Disease Spirochetes

2002 ◽  
Vol 70 (2) ◽  
pp. 491-497 ◽  
Author(s):  
Brian Stevenson ◽  
Nazira El-Hage ◽  
Melissa A. Hines ◽  
Jennifer C. Miller ◽  
Kelly Babb

ABSTRACT The Lyme disease spirochete, Borrelia burgdorferi, is capable of infecting a wide variety of vertebrates. This broad host range implies that B. burgdorferi possesses the ability to contravene the immune defenses of many potential hosts. B. burgdorferi produces multiple different Erp proteins on its outer membrane during mammalian infection. It was reported previously that one Erp protein can bind human factor H (J. Hellwage, T. Meri, T. Heikkilä, A. Alitalo, J. Panelius, P. Lahdenne, I. J. T. Seppälä, and S. Meri, J. Biol. Chem. 276:8427–8435, 2001). In this paper we report that the ability to bind the complement inhibitor factor H is a general characteristic of Erp proteins. Furthermore, each Erp protein exhibits different relative affinities for the complement inhibitors of various potential animal hosts. The data suggest that the presence of multiple Erp proteins on the surface can allow a single B. burgdorferi bacterium to resist complement-mediated killing in any of the wide range of potential hosts that it might infect. Thus, Erp proteins likely contribute to the persistence of B. burgdorferi in nature and to the ability of this bacterium to cause Lyme disease in humans and other animals.

2007 ◽  
Vol 75 (6) ◽  
pp. 3131-3139 ◽  
Author(s):  
Michael E. Woodman ◽  
Anne E. Cooley ◽  
Jennifer C. Miller ◽  
John J. Lazarus ◽  
Kathryn Tucker ◽  
...  

ABSTRACT The causative agent of Lyme disease, Borrelia burgdorferi, is naturally resistant to its host's alternative pathway of complement-mediated killing. Several different borrelial outer surface proteins have been identified as being able to bind host factor H, a regulator of the alternative pathway, leading to a hypothesis that such binding is important for borrelial resistance to complement. To test this hypothesis, the development of B. burgdorferi infection was compared between factor H-deficient and wild-type mice. Factor B- and C3-deficient mice were also studied to determine the relative roles of the alternative and classical/lectin pathways in B. burgdorferi survival during mammalian infection. While it was predicted that B. burgdorferi should be impaired in its ability to infect factor H-deficient animals, quantitative analyses of bacterial loads indicated that those mice were infected at levels similar to those of wild-type and factor B- and C3-deficient mice. Ticks fed on infected factor H-deficient or wild-type mice all acquired similar numbers of bacteria. Indirect immunofluorescence analysis of B. burgdorferi acquired by feeding ticks from the blood of infected mice indicated that none of the bacteria had detectable levels of factor H on their outer surfaces, even though such bacteria express high levels of surface proteins capable of binding factor H. These findings demonstrate that the acquisition of host factor H is not essential for mammalian infection by B. burgdorferi and indicate that additional mechanisms are employed by the Lyme disease spirochete to evade complement-mediated killing.


2007 ◽  
Vol 75 (9) ◽  
pp. 4227-4236 ◽  
Author(s):  
Tomasz Bykowski ◽  
Michael E. Woodman ◽  
Anne E. Cooley ◽  
Catherine A. Brissette ◽  
Volker Brade ◽  
...  

ABSTRACT The Lyme disease spirochete, Borrelia burgdorferi, is largely resistant to being killed by its hosts’ alternative complement activation pathway. One possible resistance mechanism of these bacteria is to coat their surfaces with host complement regulators, such as factor H. Five different B. burgdorferi outer surface proteins having affinities for factor H have been identified: complement regulator-acquiring surface protein 1 (BbCRASP-1), encoded by cspA; BbCRASP-2, encoded by cspZ; and three closely related proteins, BbCRASP-3, -4, and -5, encoded by erpP, erpC, and erpA, respectively. We now present analyses of the recently identified BbCRASP-2 and cspZ expression patterns throughout the B. burgdorferi infectious cycle, plus novel analyses of BbCRASP-1 and erp-encoded BbCRASPs. Our results, combined with data from earlier studies, indicate that BbCRASP-2 is produced primarily during established mammalian infection, while BbCRASP-1 is produced during tick-to-mammal and mammal-to-tick transmission stages but not during established mammalian infection, and Erp-BbCRASPs are produced from the time of transmission from infected ticks into mammals until they are later acquired by other feeding ticks. Transcription of cspZ and synthesis of BbCRASP-2 were severely repressed during cultivation in laboratory medium relative to mRNA levels observed during mammalian infection, and cspZ expression was influenced by culture temperature and pH, observations which will assist identification of the mechanisms employed by B. burgdorferi to control expression of this borrelial infection-associated protein.


2001 ◽  
Vol 69 (6) ◽  
pp. 4146-4153 ◽  
Author(s):  
Kelly Babb ◽  
Nazira El-Hage ◽  
Jennifer C. Miller ◽  
James A. Carroll ◽  
Brian Stevenson

ABSTRACT Deciphering the mechanisms by which Borrelia burgdorferi controls the synthesis of proteins associated with mammalian infection will be an important step toward understanding the pathogenic properties of Lyme disease-causing bacteria. We present results of studies indicating that B. burgdorferi senses a wide variety of environmental stimuli, including soluble chemicals, which enables it to independently control synthesis of the Erp and OspC proteins. Regulation of OspC and Erp expression appears to occur at the level of transcription. In this regard, we observed that one or more DNA-binding proteins interact specifically with erppromoter DNA but not with the ospC promoter.


2008 ◽  
Vol 77 (1) ◽  
pp. 300-306 ◽  
Author(s):  
Catherine A. Brissette ◽  
Katrin Haupt ◽  
Diana Barthel ◽  
Anne E. Cooley ◽  
Amy Bowman ◽  
...  

ABSTRACT Host-derived plasmin plays a critical role in mammalian infection by Borrelia burgdorferi. The Lyme disease spirochete expresses several plasminogen-binding proteins. Bound plasminogen is converted to the serine protease plasmin and thereby may facilitate the bacterium's dissemination throughout the host by degrading extracellular matrix. In this work, we demonstrate plasminogen binding by three highly similar borrelial outer surface proteins, ErpP, ErpA, and ErpC, all of which are expressed during mammalian infection. Extensive characterization of ErpP demonstrated that this protein bound in a dose-dependent manner to lysine binding site I of plasminogen. Removal of three lysine residues from the carboxy terminus of ErpP significantly reduced binding of plasminogen, and the presence of a lysine analog, ε-aminocaproic acid, inhibited the ErpP-plasminogen interaction, thus strongly pointing to a primary role for lysine residues in plasminogen binding. Ionic interactions are not required in ErpP binding of plasminogen, as addition of excess NaCl or the polyanion heparin did not have any significant effect on binding. Plasminogen bound to ErpP could be converted to the active enzyme, plasmin. The three plasminogen-binding Erp proteins can also bind the host complement regulator factor H. Plasminogen and factor H bound simultaneously and did not compete for binding to ErpP, indicating separate binding sites for both host ligands and the ability of the borrelial surface proteins to bind both host proteins.


2006 ◽  
Vol 74 (3) ◽  
pp. 1967-1972 ◽  
Author(s):  
Kelley M. Hovis ◽  
Emily Tran ◽  
Christina M. Sundy ◽  
Eric Buckles ◽  
John V. McDowell ◽  
...  

ABSTRACT The binding of Borrelia burgdorferi OspE, OspF, and family 163 (Elp) proteins to factor H/factor H-like protein 1 (FHL-1) and other serum proteins from different animals was assessed. OspE paralogs bound factor H and unidentified serum proteins from a subset of animals, while OspF and Elp proteins did not. These data advance our understanding of factor H binding, the host range of the Lyme spirochetes, and the expanding role of OspE in pathogenesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
M. Adamczyk ◽  
E. Lewicka ◽  
R. Szatkowska ◽  
H. Nieznanska ◽  
J. Ludwiczak ◽  
...  

Abstract Background DNA binding KfrA-type proteins of broad-host-range bacterial plasmids belonging to IncP-1 and IncU incompatibility groups are characterized by globular N-terminal head domains and long alpha-helical coiled-coil tails. They have been shown to act as transcriptional auto-regulators. Results This study was focused on two members of the growing family of KfrA-type proteins encoded by the broad-host-range plasmids, R751 of IncP-1β and RA3 of IncU groups. Comparative in vitro and in silico studies on KfrAR751 and KfrARA3 confirmed their similar biophysical properties despite low conservation of the amino acid sequences. They form a wide range of oligomeric forms in vitro and, in the presence of their cognate DNA binding sites, they polymerize into the higher order filaments visualized as “threads” by negative staining electron microscopy. The studies revealed also temperature-dependent changes in the coiled-coil segment of KfrA proteins that is involved in the stabilization of dimers required for DNA interactions. Conclusion KfrAR751 and KfrARA3 are structural homologues. We postulate that KfrA type proteins have moonlighting activity. They not only act as transcriptional auto-regulators but form cytoskeletal structures, which might facilitate plasmid DNA delivery and positioning in the cells before cell division, involving thermal energy.


2006 ◽  
Vol 74 (12) ◽  
pp. 7024-7028 ◽  
Author(s):  
Evelyn Rossmann ◽  
Veronique Kitiratschky ◽  
Heidelore Hofmann ◽  
Peter Kraiczy ◽  
Markus M. Simon ◽  
...  

ABSTRACT Borrelia burgdorferi complement regulator-acquiring surface protein 1 (CRASP-1), the dominant factor H and FHL-1-binding protein of the Lyme disease spirochete B. burgdorferi, is implicated in pathogen persistence and was recently reported to be nonimmunogenic in humans. Here we show that serum samples from Lyme disease patients contain antibodies with exclusive specificity for nondenatured structural determinants of CRASP-1.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
Blanco Fernández ◽  
M E Barrios ◽  
R V Cammarata ◽  
C Torres ◽  
V A Mbayed

Abstract Bacteriophages and their endolysins, enzymes that degrade the cell walls of bacteria, are emerging as alternative tools to detect and inhibit growth of pathogen bacteria. Listeria monocytogenes is a foodborne pathogen that causes listeriosis, a serious invasive disease that affects both humans and a wide range of animals. Listeria spp. are ubiquitous in the dairy farm environment and could be present in dairy-processing plants and wastewater. All Listeria-specific bacteriophages found to date are members of the Caudovirales, of the Siphoviridae or Myoviridae families. Myophages infecting Listeria have been recently classified by the ICTV in the Spounavirinae subfamily, as well as in the P100 virus genus. The aim of this work was to isolate Listeria spp. bacteriophages and their endolysin codifying genes from wastewater of a dairy industry. Wastewater with and without treatment was sampled during the course of a year, and isolation of bacteriophages was performed after an enrichment step using as hosts L. innocua, L. ivanovii, and L. monocytogenes serotypes 1/2a, 1/2b, and 4b. Bacteriophages infecting L. innocua and L. ivanovii were isolated (n = 24) from 3 out of 12 samples. Bacteriophages were purified, and the host range was determined using spot test and EOP against five collection strains and several field isolates of Listeria spp. Two bacteriophages of narrow and broad host range, vB_Lino_VEfB7, and vB_Liva_VAfA18, were selected for further characterization. High titer stocks of bacteriophages were purified by centrifugation with ammonium acetate, and morphological information on the purified bacteriophages was obtained by negative staining and transmission electronic microscopy. Their morphology, size, and contractile tails indicated that these bacteriophages belonged to the Myoviridae family. Bacteriophage genomes were extracted using phenol-chloroform, followed by ethanol precipitation, and tested by digestion with RNAsa A and DNAse I. RFLP was performed, digesting genomes with restriction enzymes HindIII and NcoI. Consistent with the morphological findings, bacteriophages contained dsDNA genomes but showed different RFLP patterns. A PCR designed to amplify conserved domains of endolysins—PGRP and CwlA—was applied to characterize this gene. Another PCR was designed to amplify the complete endolysin gene, and the complete sequence of this gene was obtained and analyzed. Substitution model selection and a maximum likelihood phylogenetic tree of the endolysin gene was carried out using IQ-Tree software. The sequences of the endolysin gene indicated that the codified enzyme is an N-acetyl-muramoyl-L-alanine amidase, related to A511 and P100 species of the recently described P100virus genus. Further evolutionary analyses are needed to evaluate their belonging to this species or their taxonomy within this genus.


2006 ◽  
Vol 188 (12) ◽  
pp. 4331-4339 ◽  
Author(s):  
Kelly Babb ◽  
Tomasz Bykowski ◽  
Sean P. Riley ◽  
M. Clarke Miller ◽  
Edward DeMoll ◽  
...  

ABSTRACT All examined isolates of the Lyme disease spirochete, Borrelia burgdorferi, naturally maintain numerous variants of a prophage family as circular cp32 episomes. Each cp32 carries a locus encoding one or two different Erp outer membrane, surface-exposed lipoproteins. Many of the Erp proteins bind a host complement regulator, factor H, which is hypothesized to protect the spirochete from complement-mediated killing. We now describe the isolation and characterization of a novel, chromosomally encoded protein, EbfC, that binds specific DNA sequences located immediately 5′ of all erp loci. This is one of the first site-specific DNA-binding proteins to be identified in any spirochete. The location of the ebfC gene on the B. burgdorferi chromosome suggests that the cp32 prophages have evolved to use this bacterial host protein for their own benefit and that EbfC probably plays additional roles in the bacterium. A wide range of other bacteria encode homologs of EbfC, none of which have been well characterized, so demonstration that B. burgdorferi EbfC is a site-specific DNA-binding protein has broad implications across the eubacterial kingdom.


Sign in / Sign up

Export Citation Format

Share Document