scholarly journals In Vivo Complementation of ureB Restores the Ability of Helicobacter pylori To Colonize

2002 ◽  
Vol 70 (2) ◽  
pp. 771-778 ◽  
Author(s):  
Kathryn A. Eaton ◽  
Joanne V. Gilbert ◽  
Elizabeth A. Joyce ◽  
Amy E. Wanken ◽  
Tracy Thevenot ◽  
...  

ABSTRACT The objective of this study was to determine (i) if complementation of ureB-negative Helicobacter pylori restores colonization and (ii) if urease is a useful reporter for promoter activity in vivo. Strains used were M6, M6ΔureB, and 10 recombinant derivatives of M6 or M6ΔureB in which urease expression was under the control of different H. pylori promoters. Mice were orally inoculated with either the wild type or one of the mutant strains, and colonization, in vivo urease activity, and extent of gastritis were determined. Of eight M6ΔureB recombinants tested, four colonized mice. Of those, three had the highest in vitro urease activity of any of the recombinants, significantly different from that of the noncolonizing mutants. The fourth colonizing recombinant, with ureB under control of the cag-15 promoter, had in vitro urease activity which did not differ significantly from the noncolonizing strains. In vivo, urease activities of the four colonizing transformants and the wild-type control were indistinguishable. There were no differences in gastritis or epithelial lesions between mice infected with M6 and those infected with the transformants. These results demonstrate that recovery of urease activity can restore colonizing ability to urease-negative H. pylori. They also suggest that cag-15 is upregulated in vivo, as was previously suggested by demonstrating that it is upregulated upon contact with epithelial cells. Finally, our results suggest that total urease activity and colonization density do not contribute to gastritis due to H. pylori.

1998 ◽  
Vol 66 (11) ◽  
pp. 5060-5066 ◽  
Author(s):  
Partha Krishnamurthy ◽  
Mary Parlow ◽  
Jason B. Zitzer ◽  
Nimish B. Vakil ◽  
Harry L. T. Mobley ◽  
...  

ABSTRACT Helicobacter pylori, an important etiologic agent in a variety of gastroduodenal diseases, produces large amounts of urease as an essential colonization factor. We have demonstrated previously that urease is located within the cytoplasm and on the surface of H. pylori both in vivo and in stationary-phase culture. The purpose of the present study was to assess the relative contributions of cytoplasmic and surface-localized urease to the ability of H. pylori to survive exposure to acid in the presence of urea. Toward this end, we compared the acid resistance in vitro of H. pylori cells which possessed only cytoplasmic urease to that of bacteria which possessed both cytoplasmic and surface-localized or extracellular urease. Bacteria with only cytoplasmic urease activity were generated by using freshly subcultured bacteria or by treating repeatedly subcultured H. pylori with flurofamide (1 μM), a potent, but poorly diffusible urease inhibitor. H. pyloriwith cytoplasmic and surface-located urease activity survived in an acid environment when 5 mM urea was present. In contrast, H. pylori with only cytoplasmic urease shows significantly reduced survival when exposed to acid in the presence of 5 mM urea. Similarly,Escherichia coli SE5000 expressing H. pyloriurease and the Ni2+ transport protein NixA, which expresses cytoplasmic urease activity at levels similar to those in wild-typeH. pylori, survived minimally when exposed to acid in the presence of 5 to 50 mM urea. We conclude that cytoplasmic urease activity alone is not sufficient (although cytoplasmic urease activity is likely to be necessary) to allow survival of H. pyloriin acid; the activity of surface-localized urease is essential for resistance of H. pylori to acid under the assay conditions used. Therefore, the mechanism whereby urease becomes associated with the surface of H. pylori, which involves release of the enzyme from bacteria due to autolysis followed by adsorption of the enzyme to the surface of intact bacteria (“altruistic autolysis”), is essential for survival of H. pylori in an acid environment. The ability of H. pylori to survive exposure to low pH is likely to depend on a combination of both cytoplasmic and surface-associated urease activities.


1998 ◽  
Vol 66 (9) ◽  
pp. 4517-4521 ◽  
Author(s):  
Stéphane Skouloubris ◽  
Jean-Michel Thiberge ◽  
Agnès Labigne ◽  
Hilde De Reuse

ABSTRACT We produced defined isogenic Helicobacter pylori ureImutants to investigate the function of UreI, the product of one of the genes of the urease cluster. The insertion of a catcassette had a strong polar effect on the expression of the downstream urease genes, resulting in very weak urease activity. Urease activity, measured in vitro, was normal in a strain in which ureI was almost completely deleted and replaced with a nonpolar cassette. In contrast to previous reports, we thus found that the product ofureI was not necessary for the synthesis of active urease. Experiments with the mouse-adapted H. pylori SS1 strain carrying the nonpolar ureI deletion showed that UreI is essential for H. pylori survival in vivo and/or colonization of the mouse stomach. The replacement of ureIwith the nonpolar cassette strongly reduced H. pylorisurvival in acidic conditions (1-h incubation in phosphate-buffered saline solution at pH 2.2) in the presence of 10 mM urea. UreI is predicted to be an integral membrane protein and may therefore be involved in a transport process essential for H. pylori survival in vivo.


1999 ◽  
Vol 181 (23) ◽  
pp. 7314-7322 ◽  
Author(s):  
David J. McGee ◽  
Fiona J. Radcliff ◽  
George L. Mendz ◽  
Richard L. Ferrero ◽  
Harry L. T. Mobley

ABSTRACT Arginase of the Helicobacter pylori urea cycle hydrolyzes l-arginine to l-ornithine and urea.H. pylori urease hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Both enzymes are involved inH. pylori nitrogen metabolism. The roles of arginase in the physiology of H. pylori were investigated in vitro and in vivo, since arginase in H. pylori is metabolically upstream of urease and urease is known to be required for colonization of animal models by the bacterium. The H. pylori genehp1399, which is orthologous to the Bacillus subtilis rocF gene encoding arginase, was cloned, and isogenic allelic exchange mutants of three H. pylori strains were made by using two different constructs: 236-2 androcF::aphA3. In contrast to wild-type (WT) strains, all rocF mutants were devoid of arginase activity and had diminished serine dehydratase activity, an enzyme activity which generates ammonium. Compared with WT strain 26695 of H. pylori, the rocF::aphA3 mutant was ∼1,000-fold more sensitive to acid exposure. The acid sensitivity of the rocF::aphA3 mutant was not reversed by the addition of l-arginine, in contrast to the WT, and yielded a ∼10,000-fold difference in viability. Urease activity was similar in both strains and both survived acid exposure equally well when exogenous urea was added, indicating that rocF is not required for urease activity in vitro. Finally, H. pylorimouse-adapted strain SS1 and the 236-2 rocF isogenic mutant colonized mice equally well: 8 of 9 versus 9 of 11 mice, respectively. However, the rocF::aphA3 mutant of strain SS1 had moderately reduced colonization (4 of 10 mice). The geometric mean levels of H. pylori recovered from these mice (in log10 CFU) were 6.1, 5.5, and 4.1, respectively. Thus,H. pylori rocF is required for arginase activity and is crucial for acid protection in vitro but is not essential for in vivo colonization of mice or for urease activity.


2003 ◽  
Vol 185 (16) ◽  
pp. 4787-4795 ◽  
Author(s):  
Stéphane Benoit ◽  
Robert J. Maier

ABSTRACT The Helicobacter pylori ureE gene product was previously shown to be required for urease expression, but its characteristics and role have not been determined. The UreE protein has now been overexpressed in Escherichia coli, purified, and characterized, and three altered versions were expressed to address a nickel-sequestering role of UreE. Purified UreE formed a dimer in solution and was capable of binding one nickel ion per dimer. Introduction of an extra copy of ureE into the chromosome of mutants carrying mutations in the Ni maturation proteins HypA and HypB resulted in partial restoration of urease activity (up to 24% of the wild-type levels). Fusion proteins of UreE with increased ability to bind nickel were constructed by adding histidine-rich sequences (His-6 or His-10 to the C terminus and His-10 as a sandwich fusion) to the UreE protein. Each fusion protein was overexpressed in E. coli and purified, and its nickel-binding capacity and affinity were determined. Each construct was also expressed in wild-type H. pylori and in hypA and hypB mutant strains for determining in vivo urease activities. The urease activity was increased by introduction of all the engineered versions, with the greatest Ni-sequestering version (the His-6 version) also conferring the greatest urease activity on both the hypA and hypB mutants. The differences in urease activities were not due to differences in the amounts of urease peptides. Addition of His-6 to another expressed protein (triose phosphate isomerase) did not result in stimulation of urease, so urease activation is not related to the level of nonspecific protein-bound nickel. The results indicate a correlation between H. pylori urease activity and the nickel-sequestering ability of the UreE accessory protein.


2007 ◽  
Vol 75 (8) ◽  
pp. 3747-3757 ◽  
Author(s):  
Susan M. Williams ◽  
Yu-Ting Chen ◽  
Tessa M. Andermann ◽  
J. Elliot Carter ◽  
David J. McGee ◽  
...  

ABSTRACT The ulcer-causing pathogen Helicobacter pylori uses directed motility, or chemotaxis, to both colonize the stomach and promote disease development. Previous work showed that mutants lacking the TlpB chemoreceptor, one of the receptors predicted to drive chemotaxis, led to less inflammation in the gerbil stomach than did the wild type. Here we expanded these findings and examined the effects on inflammation of completely nonchemotactic mutants and mutants lacking each chemoreceptor. Of note, all mutants colonized mice to the same levels as did wild-type H. pylori. Infection by completely nonchemotactic mutants (cheW or cheY) resulted in significantly less inflammation after both 3 and 6 months of infection. Mutants lacking either the TlpA or TlpB H. pylori chemotaxis receptors also had alterations in inflammation severity, while mutants lacking either of the other two chemoreceptors (TlpC and HylB) behaved like the wild type. Fully nonchemotactic and chemoreceptor mutants adhered to cultured gastric epithelial cells and caused cellular release of the chemokine interleukin-8 in vitro similar to the release caused by the wild type. The situation appeared to be different in the stomach. Using silver-stained histological sections, we found that nonchemotactic cheY or cheW mutants were less likely than the wild type to be intimately associated with the cells of the gastric mucosa, although there was not a strict correlation between intimate association and inflammation. Because others have shown that in vivo adherence promotes inflammation, we propose a model in which H. pylori uses chemotaxis to guide it to a productive interaction with the stomach epithelium.


2002 ◽  
Vol 70 (2) ◽  
pp. 685-691 ◽  
Author(s):  
Kylie J. Nolan ◽  
David J. McGee ◽  
Hazel M. Mitchell ◽  
Tassia Kolesnikow ◽  
Janette M. Harro ◽  
...  

ABSTRACT Helicobacter pylori mutants devoid of urease activity fail to colonize the gastric mucosa of mice; however, the effect of decreased levels of urease on colonization has not been examined. The nixA gene, required for full urease activity, encodes a cytoplasmic membrane nickel transporter that imports nickel ions and leads to incorporation of nickel ions into apourease. A nixA mutant of the Sydney strain of H. pylori (SS1) was constructed by disruption of the nixA gene with a kanamycin resistance cassette. This mutant retained only half the urease activity of the wild-type (wild-type) SS1 strain. C57BL/6j (n = 75) and BALB/c (n = 75) mice were inoculated independently with the wild-type or the nixA strain. The level and distribution of colonization were assessed by bacterial colony counts and histological grading at 4, 12, and 24 weeks postinfection. Colonization levels of the nixA strain in BALB/c mice were significantly lower compared with SS1 (P = 0.005), while colonization in C57BL/6j mice was similar for both the wild-type and mutant strains. Subtle differences in colonization of the different regions of the stomach, determined by microscopic grading, were observed between wild-type SS1 and the nixA strain in BALB/c mice. On the contrary, when C57BL/6j (n = 35) and BALB/c (n = 35) mice were coinfected with the wild-type and nixA strains simultaneously, the nixA mutant failed to colonize and was outcompeted by the wild-type SS1 strain, which established normal levels of colonization. These results demonstrate the importance of the nixA gene for increasing the fitness of H. pylori for gastric colonization. Since nixA is required for full urease activity, the decreased fitness of the nixA mutant is likely due to reduced urease activity; however, pleiotropic effects of the mutation cannot be completely ruled out.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


2021 ◽  
Author(s):  
M. Lorena Harvey ◽  
Aung Soe Lin ◽  
Lili Sun ◽  
Tatsuki Koyama ◽  
Jennifer H. B. Shuman ◽  
...  

Helicobacter pylori genomes encode >60 predicted outer membrane proteins (OMPs). Several OMPs in the Hop family act as adhesins, but the functions of most Hop proteins are unknown. To identify hop mutant strains that exhibit altered fitness in vivo compared to fitness in vitro , we used a genetic barcoding method that allowed us to track changes in the proportional abundance of H. pylori strains within a mixed population. We generated a library of hop mutant strains, each containing a unique nucleotide barcode, as well as a library of control strains, each containing a nucleotide barcode in an intergenic region predicted to be a neutral locus unrelated to bacterial fitness. We orogastrically inoculated each of the libraries into mice and analyzed compositional changes in the populations over time in vivo compared to changes detected in the populations during library passage in vitro . The control library proliferated as a relatively stable community in vitro, but there was a reduction in the population diversity of this library in vivo and marked variation in the dominant strains recovered from individual animals, consistent with the existence of a non-selective bottleneck in vivo . We did not identify any OMP mutants exhibiting fitness defects exclusively in vivo without corresponding fitness defects in vitro . Conversely, a babA mutant exhibited a strong fitness advantage in vivo but not in vitro . These findings, when taken together with results of other studies, suggest that production of BabA may have differential effects on H. pylori fitness depending on the environmental conditions.


2005 ◽  
Vol 12 (12) ◽  
pp. 1378-1386 ◽  
Author(s):  
Dionyssios N. Sgouras ◽  
Effrosini G. Panayotopoulou ◽  
Beatriz Martinez-Gonzalez ◽  
Kalliopi Petraki ◽  
Spyros Michopoulos ◽  
...  

ABSTRACT In clinical settings, Lactobacillus johnsonii La1 administration has been reported to have a favorable effect on Helicobacter pylori-associated gastritis, although the mechanism remains unclear. We administered, continuously through the water supply, live La1 to H. pylori-infected C57BL/6 mice and followed colonization, the development of H. pylori-associated gastritis in the lamina propria, and the levels of proinflammatory chemokines macrophage inflammatory protein 2 (MIP-2) and keratinocyte-derived cytokine (KC) in the serum and gastric tissue over a period of 3 months. We documented a significant attenuation in both lymphocytic (P = 0.038) and neutrophilic (P = 0.003) inflammatory infiltration in the lamina propria as well as in the circulating levels of anti-H. pylori immunoglobulin G antibodies (P = 0.003), although we did not observe a suppressive effect of La1 on H. pylori colonizing numbers. Other lactobacilli, such as L. amylovorus DCE 471 and L. acidophilus IBB 801, did not attenuate H. pylori-associated gastritis to the same extent. MIP-2 serum levels were distinctly reduced during the early stages of H. pylori infection in the La1-treated animals, as were gastric mucosal levels of MIP-2 and KC. Finally, we also observed a significant reduction (P = 0.046) in H. pylori-induced interleukin-8 secretion by human adenocarcinoma AGS cells in vitro in the presence of neutralized (pH 6.8) La1 spent culture supernatants, without concomitant loss of H. pylori viability. These observations suggest that during the early infection stages, administration of La1 can attenuate H. pylori-induced gastritis in vivo, possibly by reducing proinflammatory chemotactic signals responsible for the recruitment of lymphocytes and neutrophils in the lamina propria.


2020 ◽  
Author(s):  
Shihua Wu ◽  
Chunmei Bao ◽  
Ruilin Wang ◽  
Xiaomei Zhang ◽  
Sijia Gao ◽  
...  

Abstract Background: Zuojin Pill (ZJP), a famous Chinese medicinal formula, widely accepted for treatment of chronic atrophic gastritis (CAG) in China. This study aimed to explore the therapeutic effects and mechanisms of ZJP in Helicobacter pylori (H. pylori) - induced chronic atrophic gastritis (CAG) in vivo and in vitro. Methods: CAG rat model was induced by H. pylori. ZJP (0.63, 1.26, and 2.52 g/kg, respectively) was administered orally for four weeks. Therapeutic effects of ZJP were identified by H&E staining and serum indices. In addition, cell viability, morphology and proliferation were detected by cell counting kit-8 (CCK8) and high-content screening assay (HCS), respectively. Moreover, relative mRNA expression and protein expression related to JMJD2B/COX-2/VEGF axis was detected to investigate the potential mechanisms of ZJP in CAG. Results: Results showed the symptoms (weight loss and gastric mucosa damage) of CAG were alleviated, and the contents of TNF-α in serum was markedly decreased after treating with ZJP. Moreover, cell viability, proliferation and morphology changes of GES-1 cells were ameliorated by ZJP intervention. In addition, proinflammatory genes and JMJD2B/COX-2/VEGF axis related genes were suppressed by ZJP administration in vitro and in vivo. Meanwhile, immunohistochemistry (IHC) and western blot confirmed down-regulation of these genes by ZJP intervention. Conclusion: ZJP treatment can alleviate gastric mucosal damage induced by H. pylori via JMJD2B/COX-2/VEGF axis.


Sign in / Sign up

Export Citation Format

Share Document