scholarly journals Type III Secretion of Salmonella enterica Serovar Typhimurium Translocated Effectors and SseFG

2002 ◽  
Vol 70 (3) ◽  
pp. 1403-1409 ◽  
Author(s):  
Imke Hansen-Wester ◽  
Bärbel Stecher ◽  
Michael Hensel

ABSTRACT The type III secretion system (TTSS) encoded by Salmonella enterica serovar Typhimurium pathogenicity island 2 (SPI2) is employed by Salmonella enterica for interaction with host cells during the intracellular phase of pathogenesis. This TTSS secretes a set of SPI2-encoded proteins in vitro and translocates Salmonella serovar Typhimurium translocated effectors (STE) that are encoded by genes outside of SPI2 into host cells. Using an epitope-tagging approach, we analyzed secretion of proteins by the TTSS of SPI2 and identified SseF and SseG as further secreted substrate proteins. Three members of the STE family, SifA, SifB, and SseJ, were secreted under conditions that also induce secretion of SPI2-encoded substrate proteins.

2004 ◽  
Vol 186 (4) ◽  
pp. 1215-1219 ◽  
Author(s):  
Kristin Ehrbar ◽  
Siegfried Hapfelmeier ◽  
Bärbel Stecher ◽  
Wolf-Dietrich Hardt

ABSTRACT The Salmonella effector protein SopA is translocated into host cells via the SPI-1 type III secretion system (TTSS) and contributes to enteric disease. We found that the chaperone InvB binds to SopA and slightly stabilizes it in the bacterial cytosol and that it is required for its transport via the SPI-1 TTSS.


2013 ◽  
Vol 57 (5) ◽  
pp. 2191-2198 ◽  
Author(s):  
Jianfang Li ◽  
Chao Lv ◽  
Weiyang Sun ◽  
Zhenyu Li ◽  
Xiaowei Han ◽  
...  

ABSTRACTBacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability.Salmonella entericaserovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion ofSalmonellapathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliCin vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator geneshilD,hilC, andrtsAto repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription ofhhaandhns, implying that Csn-B probably affected the secretion of effectors through the Hha–H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistantSalmonella.


2001 ◽  
Vol 183 (4) ◽  
pp. 1452-1454 ◽  
Author(s):  
K. Heran Darwin ◽  
Lloyd S. Robinson ◽  
Virginia L. Miller

ABSTRACT SigD is translocated into eucaryotic cells by a type III secretion system. In this work, evidence that the putative chaperone SigE directly interacts with SigD is presented. A bacterial two-hybrid system demonstrated that SigE can interact with itself and SigD. In addition, SigD was specifically copurified with SigE-His6on a nickel column.


2011 ◽  
Vol 10 (6) ◽  
pp. 782-790 ◽  
Author(s):  
Younghoon Kim ◽  
Eleftherios Mylonakis

ABSTRACTAlthough bacterial-fungal interactions shape microbial virulence during polymicrobial infections, only a limited number of studies have evaluated this interaction on a genetic level. We report here that one interaction is mediated bysopB, an effector of a type III secretion system (TTSS) ofSalmonella entericaserovar Typhimurium. In these studies, we screened 10 TTSS effector-related mutants and determined their role in the killing ofC. albicansfilamentsin vitroduring coinfection in planktonic environments. We found that deleting thesopBgene (which encodes inositol phosphatase) was associated with a significant decrease inC. albicanskilling at 25°C after 5 days, similar to that caused by the deletion ofsipB(which encodes TTSS translocation machinery components). ThesopBdeletion dramatically influenced the killing ofC. albicansfilaments. It was associated with repressed filamentation in theCaenorhabditis elegansmodel ofC. albicans-S.Typhimurium coinfection, as well as with biofilm formation byC. albicans. We confirmed that SopB translocated to fungal filaments through SipB during coinfection. Using quantitative real-time PCR assays, we found that theCandidasupernatant upregulated theS.Typhimurium genes associated withC. albicanskilling (sopBandsipB). Interestingly, the sopBeffector negatively regulated the transcription ofCDC42, which is involved in fungal viability. Taken together, these results indicate that specific TTSS effectors, including SopB, play a critical role in bacterial-fungal interactions and are important toS.Typhimurium in order to selectively compete with fungal pathogens. These findings highlight a new role for TTSS ofS.Typhimurium in the intestinal tract and may further explain the evolution and maintenance of these traits.


2001 ◽  
Vol 69 (12) ◽  
pp. 7254-7261 ◽  
Author(s):  
Carmen R. Beuzón ◽  
Kate E. Unsworth ◽  
David W. Holden

ABSTRACT Many virulence factors are required for Salmonella enterica serovar Typhimurium to replicate intracellularly and proliferate systemically within mice. In this work, we have carried out genetic analyses in vivo to determine the functional relationship between two major virulence factors necessary for systemic infection byS. enterica serovar Typhimurium: theSalmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS) and the PhoP-PhoQ two-component regulatory system. Although previous work suggested that PhoP-PhoQ regulates SPI-2 TTSS gene expression in vitro, in vivo competitive analysis of mutant strains indicates that these systems contribute independently toS. typhimurium virulence. Our results also suggest that mutation of phoP may compensate partially for defects in the SPI-2 TTSS by deregulating SPI-1 TTSS expression. These results provide an explanation for previous reports showing an apparent functional overlap between these two systems in vitro.


Sign in / Sign up

Export Citation Format

Share Document