scholarly journals InvB Is Required for Type III-Dependent Secretion of SopA in Salmonella enterica Serovar Typhimurium

2004 ◽  
Vol 186 (4) ◽  
pp. 1215-1219 ◽  
Author(s):  
Kristin Ehrbar ◽  
Siegfried Hapfelmeier ◽  
Bärbel Stecher ◽  
Wolf-Dietrich Hardt

ABSTRACT The Salmonella effector protein SopA is translocated into host cells via the SPI-1 type III secretion system (TTSS) and contributes to enteric disease. We found that the chaperone InvB binds to SopA and slightly stabilizes it in the bacterial cytosol and that it is required for its transport via the SPI-1 TTSS.

2002 ◽  
Vol 70 (3) ◽  
pp. 1403-1409 ◽  
Author(s):  
Imke Hansen-Wester ◽  
Bärbel Stecher ◽  
Michael Hensel

ABSTRACT The type III secretion system (TTSS) encoded by Salmonella enterica serovar Typhimurium pathogenicity island 2 (SPI2) is employed by Salmonella enterica for interaction with host cells during the intracellular phase of pathogenesis. This TTSS secretes a set of SPI2-encoded proteins in vitro and translocates Salmonella serovar Typhimurium translocated effectors (STE) that are encoded by genes outside of SPI2 into host cells. Using an epitope-tagging approach, we analyzed secretion of proteins by the TTSS of SPI2 and identified SseF and SseG as further secreted substrate proteins. Three members of the STE family, SifA, SifB, and SseJ, were secreted under conditions that also induce secretion of SPI2-encoded substrate proteins.


2013 ◽  
Vol 57 (5) ◽  
pp. 2191-2198 ◽  
Author(s):  
Jianfang Li ◽  
Chao Lv ◽  
Weiyang Sun ◽  
Zhenyu Li ◽  
Xiaowei Han ◽  
...  

ABSTRACTBacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability.Salmonella entericaserovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion ofSalmonellapathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliCin vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator geneshilD,hilC, andrtsAto repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription ofhhaandhns, implying that Csn-B probably affected the secretion of effectors through the Hha–H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistantSalmonella.


2001 ◽  
Vol 183 (4) ◽  
pp. 1452-1454 ◽  
Author(s):  
K. Heran Darwin ◽  
Lloyd S. Robinson ◽  
Virginia L. Miller

ABSTRACT SigD is translocated into eucaryotic cells by a type III secretion system. In this work, evidence that the putative chaperone SigE directly interacts with SigD is presented. A bacterial two-hybrid system demonstrated that SigE can interact with itself and SigD. In addition, SigD was specifically copurified with SigE-His6on a nickel column.


2006 ◽  
Vol 74 (10) ◽  
pp. 5826-5833 ◽  
Author(s):  
Li-Mei Chen ◽  
Gabriel Briones ◽  
Ruben O. Donis ◽  
Jorge E. Galán

ABSTRACT Type III protein secretion systems, which are organelles with the capacity to deliver bacterial proteins into host cells, have been adapted to deliver heterologous antigens for vaccine development. A limitation of these antigen delivery systems is that some proteins are not amenable to secretion through this pathway. We show here that proteins from the simian and human immunodeficiency viruses that are not permissive for secretion through a Salmonella enterica serovar Typhimurium type III secretion system can be modified to travel this secretion pathway by introduction of discrete mutations. Proteins optimized for secretion were presented more efficiently via the major histocompatibility complex class I pathway and were able to induce a better immune response.


Sign in / Sign up

Export Citation Format

Share Document