scholarly journals Critical Role of Multidrug Efflux Pump CmeABC in Bile Resistance and In Vivo Colonization of Campylobacter jejuni

2003 ◽  
Vol 71 (8) ◽  
pp. 4250-4259 ◽  
Author(s):  
Jun Lin ◽  
Orhan Sahin ◽  
Linda Overbye Michel ◽  
Qijing Zhang

ABSTRACT CmeABC functions as a multidrug efflux pump contributing to the resistance of Campylobacter to a broad range of antimicrobials. In this study, we examined the role of CmeABC in bile resistance and its contribution to the adaptation of Campylobacter jejuni in the intestinal tract of the chicken, a natural host and a major reservoir for Campylobacter. Inactivation of cmeABC drastically decreased the resistance of Campylobacter to various bile salts. Addition of choleate (2 mM) in culture medium impaired the in vitro growth of the cmeABC mutants but had no effect on the growth of the wild-type strain. Bile concentration varied in the duodenum, jejunum, and cecum of chicken intestine, and the inhibitory effect of the intestinal extracts on the in vitro growth of Campylobacter was well correlated with the total bile concentration in the individual sections of chicken intestine. When inoculated into chickens, the wild-type strain colonized the birds as early as day 2 postinoculation with a density as high as 107 CFU/g of feces. In contrast, the cmeABC mutants failed to colonize any of the inoculated chickens throughout the study. The minimum infective dose for the cmeABC mutant was at least 2.6 × 104-fold higher than that of the wild-type strain. Complementation of the cmeABC mutants with a wild-type cmeABC allele in trans fully restored the in vitro growth in bile-containing media and the in vivo colonization to the levels of the wild-type strain. Immunoblotting analysis indicated that CmeABC is expressed and immunogenic in chickens experimentally infected with C. jejuni. Together, these findings provide compelling evidence that CmeABC, by mediating resistance to bile salts in the intestinal tract, is required for successful colonization of C. jejuni in chickens. Inhibition of CmeABC function may not only control antibiotic resistance but also prevent the in vivo colonization of pathogenic Campylobacter.

2005 ◽  
Vol 49 (2) ◽  
pp. 781-782 ◽  
Author(s):  
Patricia Sanchez ◽  
Eduardo Moreno ◽  
Jose L. Martinez

ABSTRACT The possibility that triclosan selects Stenotrophomonas maltophilia mutants overexpressing the multidrug resistance pump SmeDEF is analyzed. Five out of 12 triclosan-selected mutants were less susceptible to antibiotics than the wild-type strain and overproduced SmeDEF. Results are discussed in relation to current debates on the potential selection of antibiotic-resistant bacteria by household biocides.


2013 ◽  
Vol 58 (3) ◽  
pp. 1671-1677 ◽  
Author(s):  
Dora E. Wiskirchen ◽  
Patrice Nordmann ◽  
Jared L. Crandon ◽  
David P. Nicolau

ABSTRACTDoripenem and ertapenem have demonstrated efficacy against several NDM-1-producing isolatesin vivo, despite having high MICs. In this study, we sought to further characterize the efficacy profiles of humanized regimens of standard (500 mg given every 8 h) and high-dose, prolonged infusion of doripenem (2 g given every 8 h, 4-h infusion) and 1 g of ertapenem given intravenously every 24 h and the comparator regimens of ceftazidime at 2 g given every 8 h (2-h infusion), levofloxacin at 500 mg every 24 h, and aztreonam at 2 g every 6 h (1-h infusion) against a wider range of isolates in a murine thigh infection model. An isogenic wild-type strain and NDM-1-producingKlebsiella pneumoniaeand eight clinical NDM-1-producing members of the familyEnterobacteriaceaewere tested in immunocompetent- and neutropenic-mouse models. The wild-type strain was susceptible to all of the agents, while the isogenic NDM-1-producing strain was resistant to ceftazidime, doripenem, and ertapenem. Clinical NDM-1-producing strains were resistant to nearly all five of the agents (two were susceptible to levofloxacin). In immunocompetent mice, all of the agents produced ≥1-log10CFU reductions of the isogenic wild-type and NDM-1-producing strains after 24 h. Minimal efficacy of ceftazidime, aztreonam, and levofloxacin against the clinical NDM-1-producing strains was observed. However, despitein vitroresistance, ≥1-log10CFU reductions of six of eight clinical strains were achieved with high-dose, prolonged infusion of doripenem and ertapenem. Slight enhancements of doripenem activity over the standard doses were obtained with high-dose, prolonged infusion for three of the four isolates tested. Similar efficacy observations were noted in neutropenic mice. These data suggest that carbapenems are a viable treatment option for infections caused by NDM-1-producingEnterobacteriaceae.


2008 ◽  
Vol 190 (6) ◽  
pp. 1879-1890 ◽  
Author(s):  
Baoqing Guo ◽  
Ying Wang ◽  
Feng Shi ◽  
Yi-Wen Barton ◽  
Paul Plummer ◽  
...  

ABSTRACT CmeR functions as a transcriptional repressor modulating the expression of the multidrug efflux pump CmeABC in Campylobacter jejuni. To determine if CmeR also regulates other genes in C. jejuni, we compared the transcriptome of the cmeR mutant with that of the wild-type strain using a DNA microarray. This comparison identified 28 genes that showed a ≥2-fold change in expression in the cmeR mutant. Independent real-time quantitative reverse transcription-PCR experiments confirmed 27 of the 28 differentially expressed genes. The CmeR-regulated genes encode membrane transporters, proteins involved in C4-dicarboxylate transport and utilization, enzymes for biosynthesis of capsular polysaccharide, and hypothetical proteins with unknown functions. Among the genes whose expression was upregulated in the cmeR mutant, Cj0561c (encoding a putative periplasmic protein) showed the greatest increase in expression. Subsequent experiments demonstrated that this gene is strongly repressed by CmeR. The presence of the known CmeR-binding site, an inverted repeat of TGTAAT, in the promoter region of Cj0561c suggests that CmeR directly inhibits the transcription of Cj0561c. Similar to expression of cmeABC, transcription of Cj0561c is strongly induced by bile compounds, which are normally present in the intestinal tracts of animals. Inactivation of Cj0561c did not affect the susceptibility of C. jejuni to antimicrobial compounds in vitro but reduced the fitness of C. jejuni in chickens. Loss-of-function mutation of cmeR severely reduced the ability of C. jejuni to colonize chickens. Together, these findings indicate that CmeR governs the expression of multiple genes with diverse functions and is required for Campylobacter adaptation in the chicken host.


Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 350-357 ◽  
Author(s):  
Boris Lin ◽  
Laurence Catley ◽  
Richard LeBlanc ◽  
Constantine Mitsiades ◽  
Renate Burger ◽  
...  

Abstract In this study, we investigated the in vitro and in vivo efficacy of patupilone (epothilone B, EPO906), a novel nontaxane microtubule stabilizing agent, in treatment of multiple myeloma (MM). Patupilone directly inhibited growth and survival of MM cells, including those resistant to conventional chemotherapies, such as the taxane paclitaxel. Patupilone induced G2M arrest of MM cells, with subsequent apoptosis. Interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1), 2 known growth and survival factors for MM, did not protect MM.1S cells against patupilone-induced cell death. Proliferation of MM cells induced by adherence to bone marrow stromal cells (BMSCs) was also inhibited by patupilone and was paralleled by down-regulation of vascular endothelial growth factor (VEGF) secretion. Importantly, stimulation of cells from patients with MM, either with IL-6 or by adherence to BMSCs, enhanced the anti-proliferative and proapoptotic effects of patupilone. Moreover, patupilone was effective against MM cell lines that overexpress the MDR1/P-glycoprotein multidrug efflux pump. In addition, patupilone was effective in slowing tumor growth and prolonging median survival of mice that received orthotopical transplants with MM tumor cells. Taken together, these preclinical findings suggest that patupilone may be a safe and effective drug in the treatment of MM, providing the framework for clinical studies to improve patient outcome in MM. (Blood. 2005;105:350-357)


2000 ◽  
Vol 13 (5) ◽  
pp. 572-577 ◽  
Author(s):  
Ramón González-Pasayo ◽  
Esperanza Martínez-Romero

Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. The predicted gene products of rmrAB shared significant homology to membrane fusion and major facilitator proteins, respectively. Mutants of rmrA formed on average 40% less nodules in bean, while mutants of rmrA and rmrB had enhanced sensitivity to phytoalexins, flavonoids, and salicylic acid, compared with the wild-type strain. Multidrug resistance genes emrAB from Escherichia coli complemented an rmrA mutant from R. etli for resistance to high concentrations of naringenin.


2006 ◽  
Vol 188 (17) ◽  
pp. 6269-6276 ◽  
Author(s):  
Sofiane Ghorbel ◽  
Aleksey Smirnov ◽  
Hichem Chouayekh ◽  
Brice Sperandio ◽  
Catherine Esnault ◽  
...  

ABSTRACT The ppk gene of Streptomyces lividans encodes an enzyme catalyzing, in vitro, the reversible polymerization of the γ phosphate of ATP into polyphosphate and was previously shown to play a negative role in the control of antibiotic biosynthesis (H. Chouayekh and M. J. Virolle, Mol. Microbiol. 43:919-930, 2002). In the present work, some regulatory features of the expression of ppk were established and the polyphosphate content of S. lividans TK24 and the ppk mutant was determined. In Pi sufficiency, the expression of ppk was shown to be low but detectable. DNA gel shift experiments suggested that ppk expression might be controlled by a repressor using ATP as a corepressor. Under these conditions, short acid-soluble polyphosphates accumulated upon entry into the stationary phase in the wild-type strain but not in the ppk mutant strain. The expression of ppk under Pi-limiting conditions was shown to be much higher than that under Pi-sufficient conditions and was under positive control of the two-component system PhoR/PhoP. Under these conditions, the polyphosphate content of the cell was low and polyphosphates were reproducibly found to be longer and more abundant in the ppk mutant strain than in the wild-type strain, suggesting that Ppk might act as a nucleoside diphosphate kinase. In light of our results, a novel view of the role of this enzyme in the regulation of antibiotic biosynthesis in S. lividans TK24 is proposed.


2021 ◽  
Author(s):  
Yu Zhang ◽  
Aijing Liu ◽  
Yanan Wang ◽  
Hongyu Cui ◽  
Yulong Gao ◽  
...  

Since 2015, severe hydropericardium-hepatitis syndrome (HHS) associated with a novel fowl adenovirus 4 (FAdV-4) has emerged in China, representing a new challenge for the poultry industry. Although various highly pathogenic FAdV-4 strains have been isolated, the virulence factor and the pathogenesis of novel FAdV-4 are unclear. In our previous studies, we reported that a large genomic deletion (1966 bp) is not related to increased virulence. In this study, two recombinant chimeric viruses, rHN20 strain and rFB2 strain, were generated from a highly pathogenic FAdV-4 strain by replacing hexon or fiber-2 gene of a non-pathogenic FAdV-4, respectively. Both chimeric strains showed similar titers to the wild type strain in vitro . Notably, rFB2 and the wild type strain induced 100% mortality, while no mortality or clinical signs appeared in chickens inoculated with rHN20, indicating that hexon, but not fiber-2, determines the novel FAdV-4 virulence. Furthermore, an R188I mutation in the hexon protein identified residue 188 as the key amino acid for the reduced pathogenicity. The rR188I mutant strain was significantly neutralized by chicken serum in vitro and in vivo , whereas the wild type strain was able to replicate efficiently. Finally, the immunogenicity of the rescued rR188I was investigated. Non-pathogenic rR188I provided full protection against lethal FAdV-4 challenge. Collectively, these findings provide an in-depth understanding of the molecular basis of novel FAdV-4 pathogenicity and present rR188I as a potential live attenuated vaccine candidate or a novel vaccine vector for HHS vaccines. Importance HHS associated with a novel FAdV-4 infection in chickens has caused huge economic losses to the poultry industry in China since 2015. The molecular basis for the increased virulence remains largely unknown. Here, we demonstrate that the hexon gene is vital for FAdV-4 pathogenicity. Furthermore, we show that the amino acid residue at position 188 of the hexon protein is responsible for pathogenicity. Importantly, the rR188I mutant strain was neutralized by chicken serum in vitro and in vivo , whereas the wild type strain was not. Further, the rR188I mutant strain provided complete protection against FAdV-4 challenge. Our results provide a molecular basis of the increased virulence of novel FAdV-4. We propose that the rR188I mutant is a potential live attenuated vaccine against HHS and a new vaccine vector for HHS-combined vaccines.


2019 ◽  
Vol 85 (22) ◽  
Author(s):  
Monchaya Rattanaprasert ◽  
Jan-Peter van Pijkeren ◽  
Amanda E. Ramer-Tait ◽  
Maria Quintero ◽  
Car Reen Kok ◽  
...  

ABSTRACT Strains of Lactobacillus reuteri are commonly used as probiotics due to their demonstrated therapeutic properties. Many strains of L. reuteri also utilize the prebiotic galactooligosaccharide (GOS), providing a basis for formulating synergistic synbiotics that could enhance growth or persistence of this organism in vivo. In this study, in-frame deletion mutants were constructed to characterize the molecular basis of GOS utilization in L. reuteri ATCC PTA-6475. Results suggested that GOS transport relies on a permease encoded by lacS, while a second unidentified protein may function as a galactoside transporter. Two β-galactosidases, encoded by lacA and lacLM, sequentially degrade GOS oligosaccharides and GOS disaccharides, respectively. Inactivation of lacL and lacM resulted in impaired growth in the presence of GOS and lactose. In vitro competition experiments between the wild-type and ΔlacS ΔlacM strains revealed that the GOS-utilizing genes conferred a selective advantage in media with GOS but not glucose. GOS also provided an advantage to the wild-type strain in experiments in gnotobiotic mice but only on a purified, no sucrose diet. Differences in cell numbers between GOS-fed mice and mice that did not receive GOS were small, suggesting that carbohydrates other than GOS were sufficient to support growth. On a complex diet, the ΔlacS ΔlacM strain was outcompeted by the wild-type strain in gnotobiotic mice, suggesting that lacL and lacM are involved in the utilization of alternative dietary carbohydrates. Indeed, the growth of the mutants was impaired in raffinose and stachyose, which are common in plants, demonstrating that α-galactosides may constitute alternate substrates of the GOS pathway. IMPORTANCE This study shows that lac genes in Lactobacillus reuteri encode hydrolases and transporters that are necessary for the metabolism of GOS, as well as α-galactoside substrates. Coculture experiments with the wild-type strain and a gos mutant clearly demonstrated that GOS utilization confers a growth advantage in medium containing GOS as the sole carbohydrate source. However, the wild-type strain also outcompeted the mutant in germfree mice, suggesting that GOS genes in L. reuteri also provide a basis for utilization of other carbohydrates, including α-galactosides, ordinarily present in the diets of humans and other animals. Collectively, our work provides information on the metabolism of L. reuteri in its natural niche in the gut and may provide a basis for the development of synbiotic strategies.


2005 ◽  
Vol 187 (15) ◽  
pp. 5166-5178 ◽  
Author(s):  
Wael R. Abdel-Fattah ◽  
Yinghua Chen ◽  
Amr Eldakak ◽  
F. Marion Hulett

ABSTRACT The phoB gene of Bacillus subtilis encodes an alkaline phosphatase (PhoB, formerly alkaline phosphatase III) that is expressed from separate promoters during phosphate deprivation in a PhoP-PhoR-dependent manner and at stage two of sporulation under phosphate-sufficient conditions independent of PhoP-PhoR. Isogenic strains containing either the complete phoB promoter or individual phoB promoter fusions were used to assess expression from each promoter under both induction conditions. The phoB promoter responsible for expression during sporulation, phoB-PS, was expressed in a wild-type strain during phosphate deprivation, but induction occurred >3 h later than induction of Pho regulon genes and the levels were approximately 50-fold lower than that observed for the PhoPR-dependent promoter, phoB-PV. EσE was necessary and sufficient for PS expression in vitro. PS expression in a phoPR mutant strain was delayed 2 to 3 h compared to the expression in a wild-type strain, suggesting that expression or activation of σE is delayed in a phoPR mutant under phosphate-deficient conditions, an observation consistent with a role for PhoPR in spore development under these conditions. Phosphorylated PhoP (PhoP∼P) repressed PS in vitro via direct binding to the promoter, the first example of an EσE-responsive promoter that is repressed by PhoP∼P. Whereas either PhoP or PhoP∼P in the presence of EσA was sufficient to stimulate transcription from the phoB-PV promoter in vitro, roughly 10- and 17-fold-higher concentrations of PhoP than of PhoP∼P were required for PV promoter activation and maximal promoter activity, respectively. The promoter for a second gene in the Pho regulon, ykoL, was also activated by elevated concentrations of unphosphorylated PhoP in vitro. However, because no Pho regulon gene expression was observed in vivo during Pi -replete growth and PhoP concentrations increased only threefold in vivo during phoPR autoinduction, a role for unphosphorylated PhoP in Pho regulon activation in vivo is not likely.


2001 ◽  
Vol 183 (17) ◽  
pp. 4958-4963 ◽  
Author(s):  
Takashi Inaoka ◽  
Koji Kasai ◽  
Kozo Ochi

ABSTRACT To investigate the function of ribosomal proteins and translational factors in Bacillus subtilis, we developed an in vivo assay system to measure the level of nonsense readthrough by utilizing the LacZ-LacI system. Using the in vivo nonsense readthrough assay system which we developed, together with an in vitro poly(U)-directed cell-free translation assay system, we compared the processibility and translational accuracy of mutant ribosomes with those of the wild-type ribosome. Like Escherichia coli mutants, most S12 mutants exhibited lower frequencies of both UGA readthrough and missense error; the only exception was a mutant (in which Lys-56 was changed to Arg) which exhibited a threefold-higher frequency of readthrough than the wild-type strain. We also isolated several ribosomal ambiguity (ram) mutants from an S12 mutant. These ram mutants and the S12 mutant mentioned above (in which Lys-56 was changed to Arg) exhibited higher UGA readthrough levels. Thus, the mutation which altered Lys-56 to Arg resulted in aram phenotype in B. subtilis. The efficacy of our in vivo nonsense readthrough assay system was demonstrated in our investigation of the function of ribosomal proteins and translational factors.


Sign in / Sign up

Export Citation Format

Share Document