Patupilone (epothilone B) inhibits growth and survival of multiple myeloma cells in vitro and in vivo

Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 350-357 ◽  
Author(s):  
Boris Lin ◽  
Laurence Catley ◽  
Richard LeBlanc ◽  
Constantine Mitsiades ◽  
Renate Burger ◽  
...  

Abstract In this study, we investigated the in vitro and in vivo efficacy of patupilone (epothilone B, EPO906), a novel nontaxane microtubule stabilizing agent, in treatment of multiple myeloma (MM). Patupilone directly inhibited growth and survival of MM cells, including those resistant to conventional chemotherapies, such as the taxane paclitaxel. Patupilone induced G2M arrest of MM cells, with subsequent apoptosis. Interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1), 2 known growth and survival factors for MM, did not protect MM.1S cells against patupilone-induced cell death. Proliferation of MM cells induced by adherence to bone marrow stromal cells (BMSCs) was also inhibited by patupilone and was paralleled by down-regulation of vascular endothelial growth factor (VEGF) secretion. Importantly, stimulation of cells from patients with MM, either with IL-6 or by adherence to BMSCs, enhanced the anti-proliferative and proapoptotic effects of patupilone. Moreover, patupilone was effective against MM cell lines that overexpress the MDR1/P-glycoprotein multidrug efflux pump. In addition, patupilone was effective in slowing tumor growth and prolonging median survival of mice that received orthotopical transplants with MM tumor cells. Taken together, these preclinical findings suggest that patupilone may be a safe and effective drug in the treatment of MM, providing the framework for clinical studies to improve patient outcome in MM. (Blood. 2005;105:350-357)

2008 ◽  
Vol 190 (6) ◽  
pp. 1879-1890 ◽  
Author(s):  
Baoqing Guo ◽  
Ying Wang ◽  
Feng Shi ◽  
Yi-Wen Barton ◽  
Paul Plummer ◽  
...  

ABSTRACT CmeR functions as a transcriptional repressor modulating the expression of the multidrug efflux pump CmeABC in Campylobacter jejuni. To determine if CmeR also regulates other genes in C. jejuni, we compared the transcriptome of the cmeR mutant with that of the wild-type strain using a DNA microarray. This comparison identified 28 genes that showed a ≥2-fold change in expression in the cmeR mutant. Independent real-time quantitative reverse transcription-PCR experiments confirmed 27 of the 28 differentially expressed genes. The CmeR-regulated genes encode membrane transporters, proteins involved in C4-dicarboxylate transport and utilization, enzymes for biosynthesis of capsular polysaccharide, and hypothetical proteins with unknown functions. Among the genes whose expression was upregulated in the cmeR mutant, Cj0561c (encoding a putative periplasmic protein) showed the greatest increase in expression. Subsequent experiments demonstrated that this gene is strongly repressed by CmeR. The presence of the known CmeR-binding site, an inverted repeat of TGTAAT, in the promoter region of Cj0561c suggests that CmeR directly inhibits the transcription of Cj0561c. Similar to expression of cmeABC, transcription of Cj0561c is strongly induced by bile compounds, which are normally present in the intestinal tracts of animals. Inactivation of Cj0561c did not affect the susceptibility of C. jejuni to antimicrobial compounds in vitro but reduced the fitness of C. jejuni in chickens. Loss-of-function mutation of cmeR severely reduced the ability of C. jejuni to colonize chickens. Together, these findings indicate that CmeR governs the expression of multiple genes with diverse functions and is required for Campylobacter adaptation in the chicken host.


2003 ◽  
Vol 47 (1) ◽  
pp. 432-435 ◽  
Author(s):  
Miyuki Kumano ◽  
Masaya Fujita ◽  
Kouji Nakamura ◽  
Makiko Murata ◽  
Reiko Ohki ◽  
...  

ABSTRACT We isolated 19 lincomycin-resistant Bacillus subtilis mutants by expressing lmrB encoding a putative multidrug efflux protein. Eighteen of the mutants altered at two regions (−3 to −1 and +15) immediately downstream of the −10 region of the lmr promoter increased lmr transcription in vivo and in vitro.


2006 ◽  
Vol 50 (7) ◽  
pp. 2448-2454 ◽  
Author(s):  
A. S. Bayer ◽  
L. I. Kupferwasser ◽  
M. H. Brown ◽  
R. A. Skurray ◽  
S. Grkovic ◽  
...  

ABSTRACT Thrombin-induced platelet microbial protein 1 (tPMP-1), a cationic antimicrobial polypeptide released from thrombin-stimulated rabbit platelets, targets the Staphylococcus aureus cytoplasmic membrane to initiate its microbicidal effects. In vitro resistance to tPMP-1 correlates with survival advantages in vivo. In S. aureus, the plasmid-carried qacA gene encodes a multidrug transporter, conferring resistance to organic cations (e.g., ethidium [Et]) via proton motive force (PMF)-energized export. We previously showed that qacA also confers a tPMP-1-resistant (tPMP-1r) phenotype in vitro. The current study evaluated whether (i) transporters encoded by the qacB and qacC multidrug resistance genes also confer tPMP-1r and (ii) tPMP-1r mediated by qacA is dependent on efflux pump activity. In contrast to tPMP-1r qacA-bearing strains, the parental strain and its isogenic qacB- and qacC-containing strains were tPMP-1 susceptible (tPMP-1s). Efflux pump inhibition by cyanide m-chlorophenylhydrazone abrogated Etr, but not tPMP-1r, in the qacA-bearing strain. In synergy assays, exposure of the qacA-bearing strain to tPMP-1 did not affect the susceptibility of Et (ruling out Et-tPMP-1 cotransport). The following cytoplasmic membrane parameters did not differ significantly between the qacA-bearing and parental strains: contents of the major phospholipids; asymmetric distributions of the positively charged species, lysyl-phosphotidylglycerol; fatty acid composition; and relative surface charge. Of note, the qacA-bearing strain exhibited greater membrane fluidity than that of the parental, qacB-, or qacC-bearing strain. In conclusion, among these families of efflux pumps, only the multidrug transporter encoded by qacA conferred a tPMP-1r phenotype. These data suggest that qacA-encoded tPMP-1r results from the impact of a specific transporter upon membrane structure or function unrelated to PMF-dependent peptide efflux.


2003 ◽  
Vol 71 (8) ◽  
pp. 4250-4259 ◽  
Author(s):  
Jun Lin ◽  
Orhan Sahin ◽  
Linda Overbye Michel ◽  
Qijing Zhang

ABSTRACT CmeABC functions as a multidrug efflux pump contributing to the resistance of Campylobacter to a broad range of antimicrobials. In this study, we examined the role of CmeABC in bile resistance and its contribution to the adaptation of Campylobacter jejuni in the intestinal tract of the chicken, a natural host and a major reservoir for Campylobacter. Inactivation of cmeABC drastically decreased the resistance of Campylobacter to various bile salts. Addition of choleate (2 mM) in culture medium impaired the in vitro growth of the cmeABC mutants but had no effect on the growth of the wild-type strain. Bile concentration varied in the duodenum, jejunum, and cecum of chicken intestine, and the inhibitory effect of the intestinal extracts on the in vitro growth of Campylobacter was well correlated with the total bile concentration in the individual sections of chicken intestine. When inoculated into chickens, the wild-type strain colonized the birds as early as day 2 postinoculation with a density as high as 107 CFU/g of feces. In contrast, the cmeABC mutants failed to colonize any of the inoculated chickens throughout the study. The minimum infective dose for the cmeABC mutant was at least 2.6 × 104-fold higher than that of the wild-type strain. Complementation of the cmeABC mutants with a wild-type cmeABC allele in trans fully restored the in vitro growth in bile-containing media and the in vivo colonization to the levels of the wild-type strain. Immunoblotting analysis indicated that CmeABC is expressed and immunogenic in chickens experimentally infected with C. jejuni. Together, these findings provide compelling evidence that CmeABC, by mediating resistance to bile salts in the intestinal tract, is required for successful colonization of C. jejuni in chickens. Inhibition of CmeABC function may not only control antibiotic resistance but also prevent the in vivo colonization of pathogenic Campylobacter.


2021 ◽  
Vol 22 (4) ◽  
pp. 2062
Author(s):  
Aneta Kaczor ◽  
Karolina Witek ◽  
Sabina Podlewska ◽  
Veronique Sinou ◽  
Joanna Czekajewska ◽  
...  

In the search for an effective strategy to overcome antimicrobial resistance, a series of new morpholine-containing 5-arylideneimidazolones differing within either the amine moiety or at position five of imidazolones was explored as potential antibiotic adjuvants against Gram-positive and Gram-negative bacteria. Compounds (7–23) were tested for oxacillin adjuvant properties in the Methicillin-susceptible S. aureus (MSSA) strain ATCC 25923 and Methicillin-resistant S. aureus MRSA 19449. Compounds 14–16 were tested additionally in combination with various antibiotics. Molecular modelling was performed to assess potential mechanism of action. Microdilution and real-time efflux (RTE) assays were carried out in strains of K. aerogenes to determine the potential of compounds 7–23 to block the multidrug efflux pump AcrAB-TolC. Drug-like properties were determined experimentally. Two compounds (10, 15) containing non-condensed aromatic rings, significantly reduced oxacillin MICs in MRSA 19449, while 15 additionally enhanced the effectiveness of ampicillin. Results of molecular modelling confirmed the interaction with the allosteric site of PBP2a as a probable MDR-reversing mechanism. In RTE, the compounds inhibited AcrAB-TolC even to 90% (19). The 4-phenylbenzylidene derivative (15) demonstrated significant MDR-reversal “dual action” for β-lactam antibiotics in MRSA and inhibited AcrAB-TolC in K. aerogenes. 15 displayed also satisfied solubility and safety towards CYP3A4 in vitro.


2003 ◽  
Vol 55 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Michael D. Mueller ◽  
Elizabeth A. Pritts ◽  
Charles J. Zaloudek ◽  
Ekkehard Dreher ◽  
Robert N. Taylor

2021 ◽  
Author(s):  
Kristin Roseth Aass ◽  
Robin Mjelle ◽  
Martin H. Kastnes ◽  
Synne S. Tryggestad ◽  
Luca M. van den Brink ◽  
...  

AbstractIL-32 is a non-classical cytokine expressed in cancers, inflammatory diseases and infections. IL-32 can have both extracellular and intracellular functions, and its receptor is not identified. We here demonstrate that endogenously expressed, intracellular IL-32 binds to components of the mitochondrial respiratory chain and promotes oxidative phosphorylation. Knocking out IL-32 in malignant plasma cells significantly reduced survival and proliferation in vitro and in vivo. High throughput transcriptomic and MS-metabolomic profiling of IL-32 KO cells revealed that loss of IL-32 leads to profound perturbations in metabolic pathways, with accumulation of lipids, pyruvate precursors and citrate, indicative of reduced mitochondrial function. IL-32 is expressed in a subgroup of multiple myeloma patients with an inferior prognosis. Primary myeloma cells expressing IL-32 were characterized by a plasma cell gene signature associated with immune activation, proliferation and oxidative phosphorylation. We propose a novel concept for regulation of metabolism by an intracellular cytokine and identify IL-32 as an endogenous growth and survival factor for malignant plasma cells. IL-32 is a potential prognostic biomarker and a treatment target in multiple myeloma.


Sign in / Sign up

Export Citation Format

Share Document