scholarly journals Role for Nucleotide Excision Repair in Virulence of Mycobacterium tuberculosis

2005 ◽  
Vol 73 (8) ◽  
pp. 4581-4587 ◽  
Author(s):  
K. Heran Darwin ◽  
Carl F. Nathan

ABSTRACT Mutations in Mycobacterium tuberculosis uvrB result in severe sensitivity to acidified nitrite, a source of nitric oxide (6). In this study, we show that a uvrB mutant is exquisitely sensitive to UV light but not to several sources of reactive oxygen species in vitro. Furthermore, a uvrB mutant was attenuated in mice as judged by an extension of life span. Attenuation in mice was partially reversed by genetic inactivation of nitric oxide synthase 2 (iNOS) and almost completely reversed in mice lacking both iNOS and phagocyte oxidase. Thus, a gene predicted to encode a key element of DNA repair is required for resistance of M. tuberculosis to both reactive nitrogen and reactive oxygen species in mice.

Author(s):  
Anatolii Onishchenko ◽  
Valeriy Myasoedov ◽  
Svetlana Yefimova ◽  
Oksana Nakonechna ◽  
Volodymyr Prokopyuk ◽  
...  

2020 ◽  
Vol 16 (3) ◽  
pp. e1008379 ◽  
Author(s):  
Artur Santos-Miranda ◽  
Julliane Vasconcelos Joviano-Santos ◽  
Grazielle Alves Ribeiro ◽  
Ana Flávia M. Botelho ◽  
Peter Rocha ◽  
...  

2020 ◽  
Vol 16 (10) ◽  
pp. e1009049
Author(s):  
Artur Santos-Miranda ◽  
Julliane Vasconcelos Joviano-Santos ◽  
Grazielle Alves Ribeiro ◽  
Ana Flávia M. Botelho ◽  
Peter Rocha ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2966 ◽  
Author(s):  
Milica Lazarević ◽  
Emanuela Mazzon ◽  
Miljana Momčilović ◽  
Maria Basile ◽  
Giuseppe Colletti ◽  
...  

GYY4137 is a hydrogen sulfide (H2S) donor that has been shown to act in an anti-inflammatory manner in vitro and in vivo. Microglial cells are among the major players in immunoinflammatory, degenerative, and neoplastic disorders of the central nervous system, including multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and glioblastoma multiforme. So far, the effects of GYY4137 on microglial cells have not been thoroughly investigated. In this study, BV2 microglial cells were stimulated with interferon-gamma and lipopolysaccharide and treated with GYY4137. The agent did not influence the viability of BV2 cells in concentrations up to 200 μM. It inhibited tumor necrosis factor but not interleukin-6 production. Expression of CD40 and CD86 were reduced under the influence of the donor. The phagocytic ability of BV2 cells and nitric oxide production were also affected by the agent. Surprisingly, GYY4137 upregulated generation of reactive oxygen species (ROS) by BV2 cells. The effect was mimicked by another H2S donor, Na2S, and it was not reproduced in macrophages. Our results demonstrate that GYY4137 downregulates inflammatory properties of BV2 cells but increases their ability to generate ROS. Further investigation of this unexpected phenomenon is warranted.


2020 ◽  
Author(s):  
Thalita Bachelli Riul ◽  
Helioswilton Sales de Campos ◽  
Djalma de Souza Lima-Junior ◽  
Ana Elisa Caleiro Seixas Azzolini ◽  
Cristina Ribeiro de Barros Cardoso ◽  
...  

SUMMARYTrypanosoma cruzi is an intracellular parasite that causes Chagas disease that affects millions of people worldwide. Many cellular and molecular aspects of this neglected disease are not fully understood. Prior studies have shown that galectin-1 (Gal-1), a β-galactoside-binding protein that regulates leukocyte recruitment to the inflammatory site, and promotes T. cruzi infection, but the mechanism is unclear. Here, we report that C57BL/6 mice lacking Gal-1 (Lgals1−/−) exhibited lower parasitemia and higher survival rates than their wildtype (WT) counterparts when infected with T. cruzi Y strain. Two weeks after infection, Lgals1−/− mice displayed greater neutrophil accumulation in infection site and heart tissue than WT mice. In T. cruzi-infected Lgals1−/− mice, infiltrated neutrophils produced increased levels of reactive oxygen species (ROS), while macrophages and neutrophils produced increased levels of nitric oxide (NO), which reduced replication and viability of parasites in vitro and downregulated IL-1β production. Pharmacological inhibition of NADPH oxidase and NO synthase during early in vivo infection reversed the protective effect of Gal-1 deficiency in Lgals1−/− mice. Together, our findings demonstrate that lacking Gal-1 favors neutrophil migration to the infection site and increases production of ROS and NO, thereby controlling the early steps of T. cruzi infection by reducing parasitemia and prolonging survival of infected mice.


Microbiology ◽  
2010 ◽  
Vol 156 (12) ◽  
pp. 3556-3565 ◽  
Author(s):  
Samantha McLean ◽  
Lesley A. H. Bowman ◽  
Robert K. Poole

Oxidative and nitrosative stresses including nitric oxide (NO), superoxide () and peroxynitrite play key roles in determining the outcome of bacterial infections. In order to survive within the host and allow proliferation within immune cells such as macrophages, Salmonella isolates have a number of inducible proteins that are able to detoxify these highly reactive species, notably the anoxically functioning NO reductase NorVW, and the aerobically functioning flavohaemoglobin, Hmp, which catalyses the reaction between oxygen and NO to produce relatively inert nitrate. However, in the absence of NO but in the presence of reducing substrates and oxygen, is generated from Hmp-mediated electron transfer to bound oxygen and may form a variety of further oxidative species. Hence, Hmp expression is under tight negative regulation by the transcription factor NsrR, abolition of which causes an increase in the production of Hmp. In a previous study, this increase in Hmp levels conferred resistance to the nitrosating agent S-nitrosoglutathione but, perhaps surprisingly, the organism became more sensitive to killing by macrophages. Here, we report that an nsrR mutant that constitutively overexpresses Hmp is also hypersensitive to peroxynitrite in vitro. This sensitivity is alleviated by deletion of the hmp gene or pre-incubation of growing bacteria with NO-releasing agents. We hypothesize that Hmp-expressing cells, in the absence of NO, generate reactive oxygen species, the toxicity of which is exacerbated by peroxynitrite in vitro and in macrophages. RT-PCR confirmed that peroxynitrite causes oxidative stress and upregulation of katG and ahpC, whilst hmp and norV expression are affected very little. The katG gene upregulated by peroxynitrite encodes a catalase peroxidase enzyme with well-established roles in detoxifying peroxides. Here, we report that KatG is also able to enhance the breakdown of peroxynitrite, suggesting that the protective role of this enzyme may be wider than previously thought. These data suggest that spatial and temporal fluctuations in the levels of NO and reactive oxygen species will have important consequences for bacterial survival in the macrophage.


Sign in / Sign up

Export Citation Format

Share Document